
Online Estimation of Discrete Densities

Michael Geilke∗, Eibe Frank†, Andreas Karwath∗ and Stefan Kramer∗

∗ Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
† Department of Computer Science, The University of Waikato, Hamilton 3240, New Zealand

Email: {geilke,karwath,kramer}@informatik.uni-mainz.de, eibe@cs.waikato.ac.nz

Abstract—We address the problem of estimating a discrete
joint density online, that is, the algorithm is only provided the
current example and its current estimate. The proposed online
estimator of discrete densities, EDDO (Estimation of Discrete
Densities Online), uses classifier chains to model dependencies
among features. Each classifier in the chain estimates the prob-
ability of one particular feature. Because a single chain may
not provide a reliable estimate, we also consider ensembles of
classifier chains and ensembles of weighted classifier chains. For
all density estimators, we provide consistency proofs and propose
algorithms to perform certain inference tasks. The empirical
evaluation of the estimators is conducted in several experiments
and on data sets of up to several million instances: We compare
them to density estimates computed from Bayesian structure
learners, evaluate them under the influence of noise, measure
their ability to deal with concept drift, and measure the run-time
performance. Our experiments demonstrate that, even though
designed to work online, EDDO delivers estimators of competitive
accuracy compared to batch Bayesian structure learners and
batch variants of EDDO.

I. INTRODUCTION

Whereas many data mining tasks have received consider-
able attention in the context of stream mining recently, only
little is known about the estimation of joint densities in an
online setting. Offline density estimation includes recent work
based on decision trees [1], where the leaves contain piecewise
constant estimators. A similar approach was pursued by Davies
and Moore [2] as part of a conditional density estimator.
Vapnik and Mukherjee [3] used SVMs to perform density
estimation. Work towards estimation of conditional density
estimation has been pursued among others by Holmes et al.
[4], Frank and Bouckaert [5], and Buchwald et al. [6].

Multi-variate densities are frequently estimated using ker-
nel density estimators [7], [8]. Kernel density estimation is
also the predominant direction of the few online variants of
density estimation so far. For example, Kristan et al. [9], [10]
proposed a method yielding results that are comparable to
corresponding batch approaches. Lambert et al. [11] suggest a
density estimator employing multipole expansions to achieve
fast or even constant update time of the density estimate.
Efficient density estimation was also the aim of other kernel
based density estimators, e.g., Zhou et al. [12] and Elgammal
et al. [13].

c© 2013 IEEE This is a preprint of the paper: Michael Geilke,
Andreas Karwath, Eibe Frank, and Stefan Kramer. Online Estimation
of Discrete Densities. In: Proceedings of the 13th IEEE International
Conference on Data Mining (ICDM 2013), pp. 191-200, IEEE 2013.
http://dx.doi.org/10.1109/ICDM.2013.91

In this paper, we consider the problem of estimating
discrete joint densities online (notice that we use discrete
densities as a synonym for probability mass functions), a
challenging task, which requires to estimate the probabilities
of a large number of discrete values, the distribution of which
may change over time (concept drift). Even if no concept drift
would be present, representing the probabilities of these values
in a compact way requires sophisticated estimators. If the
probabilities were simply stored into a table, e.g., by counting
the number of occurrences, even small joint densities with
10 attributes and 10 values for each attribute would already
require 1010 entries.

The approach we propose is based on so-called classifier
chains [14], [15] and uses a set of probabilistic online classi-
fiers to model a discrete joint probability distribution. In this
way, one can build on existing work in online learning and
hence take advantage of scalable, well-performing algorithms.
The classifiers in a chain aim to model the probabilities of
a particular feature, and the overall chain aims to model the
dependencies among the features, which factors the density
into smaller parts and enables to perform inference tasks on
it. The individual estimates are combined using the product
rule. Because a single classifier chain may not be sufficiently
robust, we also provide a variant that uses ensembles of clas-
sifier chains and ensembles of weighted classifier chains. We
evaluate our density estimators using discrete joint densities
that were generated from Bayesian networks as well as on real-
world data sets. For each density estimator, we also provide
consistency proofs and propose algorithms to perform certain
inference tasks.

The main contributions of this paper are as follows:

• We study the estimation of discrete densities in the
online setting. The study is worked out in detail both
theoretically and experimentally.

• We propose the use of classifier chains (CCs) and en-
sembles of classifier chains (ECCs) for the estimation
of discrete densities. Up to now, CCs and ECCs were
studied solely for multi-label classification.

• We propose the use of ensembles of classifier chains in
the world of online learning. Up to now, ensembles of
classifier chains were studied solely in batch learning.

• The paper introduces ensembles of weighted classifier
chains (EWCCs) as an alternative to regular, un-
weighted classifier chains. Our experiments show that
EWCCs exhibit favorable behavior in many settings.



• We provide consistency proofs for the density es-
timators employing classifier chains, ensembles of
classifier chains, and ensembles of weighted classifier
chains.

• To illustrate potential applications of the estimated
densities, we present inference algorithms that process
queries based upon them.

• We present a comprehensive set of experiments inves-
tigating the quality of the density estimates generated
by our method on (noisy) synthetic data, synthetic
data with concept drift, and real-world data sets. They
are compared to twelve Bayesian structure learners,
which are combined with both maximum likelihood
and Bayesian aposteriori to estimate the conditional
probability tables. The experiments show that our
new approach EDDO (estimation of discrete densities
online) produces estimators that are highly competitive
with existing Bayesian network structure learners,
while working efficiently in the online setting.

The remainder of the paper is organized as follows. In
Section II, we describe a method to perform online estimation
of discrete joint densities and provide proofs showing that these
estimators are consistent as long as their base classifiers are. In
Section III, we propose algorithms to perform certain inference
tasks on these estimators. This includes queries containing hard
evidence and queries that create densities containing specific
variables or instances. In Section IV, the experimental set-
up and the results of six experiments are presented. In these
experiments, we compare our density estimators to density
estimates computed from Bayesian structure learners, measure
the run-time, evaluate the influence of noise, and measure their
ability to deal with concept drift. Moreover, we also investigate
how the ordering of individual classifier chains affect their
performance. Section V concludes the paper.

II. ONLINE DENSITY ESTIMATION

Let X1, . . . , Xn be nominal features and f(X1, . . . , Xn)
be an unknown discrete joint density. In this section, we
present algorithms that, given an infinite stream of data that
is distributed according to f , determine a density estimate f̂
for f . The data stream is processed in an online fashion, that
is, an algorithm is only provided the current example and its
current density estimate. The estimates that are produced by
these algorithms are represented using classifier chains, which
not only factor the joint density into smaller parts but also
enable application of a broad range of fast and efficient online
base classifiers.

A. Classifier Chain

As a first step, we provide an algorithm that employs a
single classifier chain to determine a density estimate. Let
f(X1, . . . , Xn) be a discrete joint density. Then we can apply
the product rule and obtain the following equality:

f(X1, . . . , Xn) = f1(X1) ·
n∏
i=2

fi(Xi | X1, . . . , Xi−1). (1)

In other words, in order to model the discrete joint density f ,
it is sufficient to model the density f1(X1) and the conditional

densities fi(Xi | X1, X2, . . . , Xi−1), i ∈ {2, . . . , n}. The
product over these estimates yields an estimate of f . To model
the individual densities fi, 1 ≤ i ≤ n, we employ classifiers
that return class probability estimates. For f1(X1), we employ
a Majority Class classifier, which provides the probability
masses of the classes of X1, and for fi(Xi | X1, . . . , Xi−1),
i ∈ {2, . . . , n}, we employ Hoeffding trees [16]. Both clas-
sifiers allow us to estimate the density in an online fashion.
In case the density changes over time, we employ classifiers
that are able to deal with concept drift such as the Concept-
adapting Very Fast Decision Tree learner [17].

Based on the classifier chain implied by Equation 1, our al-
gorithm initializes the base classifiers for f1, . . . , fn. When the
algorithm receives an example (x1, . . . , xn) from an instance
stream, it produces n examples, where example i contains the
features X1, . . . , Xi. The example (x1) is forwarded to the
classifier for f1(X1) and the example (x1, . . . , xi) is forwarded
to the classifier for fi(Xi | X1, . . . , Xi−1), i ∈ {1, . . . , n}.
Subsequently, each classifier processes its example and updates
its current estimate.

If we need to draw an instance from our density estimate,
we simply iterate over the classifiers from f1(X1) to fn(Xn |
X1, . . . , Xn−1), draw an estimate from each classifier, sample
a value based on the distribution obtained, and use the output
as input for the next classifier. In a similar fashion, we can
also compute the probability of a given instance.

B. Ensembles of Classifier Chains

The product on the right-hand side of Equation 1 is only
one way to represent the discrete joint density — there are
many other possibilities. Let m : {1, . . . , n} → {1, . . . , n} be
a bijective mapping. Then,

f(X1, . . . , Xn) =

f(Xm(1)) ·
n∏
i=2

f(Xm(i) | Xm(1), . . . , Xm(i−1)). (2)

In other words, we simply use a different ordering of the
features to represent the discrete joint density, which then re-
sults in a different classifier chain. Although all such products
represent the same joint density assuming the true conditional
density estimates are known, the ordering may be important
for the performance of our classifiers: Ideally, the ordering
enables the classifiers to exploit conditional independence
relationships, so that some of the features can be ignored.
Hence, to increase robustness, we consider a second algorithm
that generates several classifier chains and combines their
estimates to a single density estimate. This algorithm, which
generates ensembles of classifier chains, simply samples chains
from the set of possible feature orderings at random and
averages the density estimates obtained.

Although the number of possible orderings is exponential
in the number of features, ensembles do not seem to require an
exponential number of chains. In a set of experiments (detailed
results omitted due to lack of space), we found that doubling
and tripling the number of classifier chains (starting with as
many classifier chains as features) only yielded negligible
improvements. This is in line with other results from the
ensemble literature. Bauer and Kohavi [18] and Frank and



Kramer [19], for instance, reported that ensembles of at most
25 respectively 20 ensemble members were sufficient to obtain
a solution sufficiently close to the optimum.

Notice that although it is straightforward to obtain a density
estimate for a particular instance from the ensemble, it is no
longer straightforward to generate data samples based on the
estimated density. The simple process that can be used in the
case of a single chain no longer applies. One possibility to
sample instances from the estimator is to employ a Metropolis-
Hastings algorithm [20]. It requires a candidate-generating
density, from which samples are generated, and a criterion
to decide whether or not to accept a given sample [21]. With
increasing numbers of samples, the chain that results from this
process converges to the true density. The instances generated
at the beginning are usually discarded, because it takes a few
instances until the true density is approached. In order to
determine when this is the case, one can use multiple chains
and compare the samples from these chains [22], [21]. To apply
the Metropolis-Hastings algorithm, it is sufficient to supply a
candidate-generating density, the choice of which will affect
the rate of convergence and the number of samples that have
to be rejected.

C. Ensembles of Weighted Classifier Chains

An ensemble of classifier chains computes the average
over all classifier chains, thereby compensating for chains
with insufficient performance. If we were able to weight the
chains according to their current performance, it could further
improve the density estimation of the ensemble. Although
there are many possibilities to measure performance, we are
restricted to algorithms that work incrementally and are able to
deal with concept drifts. One possibility is the information loss,
which will allow us to measure the performance of classifier
chains on specific instances. Using this measure, we assign a
weight to each classifier chain, which determines the influence
of a classifier chain when drawing instances or computing the
probability of an instance.

Algorithm 1 Updating the weights of classifier chains.
Require: Let cc1, . . . , cck be classifier chains. Further, let

w1, . . . , wk ∈ R be the corresponding weights and x :=
(x1, . . . , xn) be an instance.

1: Let pi be the probability of x w.r.t. cci
2: L := (− log2 p1, . . . ,− log2 pk)
3: m := max{Li | i ∈ [1; k]}
4: for i = 1, . . . , k do
5: wi := wi + (1− Li

m )
6: end for
7: normalize the vector (w1, . . . , wn)

Algorithm 1 is based on a heuristic employing the in-
formation loss and describes a procedure for updating the
weights when new instances arrive. Let (x1, . . . , xn) be an
instance. Algorithm 1 iterates over the classifier chains and
computes the probability pi for each classifier chain cci, which
is the probability of x with respect to cci. Then pi is used
to determine the corresponding information loss (− log2 pi),
which is used to update the global weights. The weight update
is determined by computing the worst information loss value
m, normalizing the information loss values by m, and updating

the individual weights by adding (1− Li

m ). Consequently, the
weights for classifier chains with a large information loss
are increased only slightly, whereas the weights for classifier
chains with a small information loss are increased more. In
the final step of the algorithm, the weights are renormalized,
so that they sum to one.

If we have to compute the probability of an instance, then
we simply combine the probabilities of the individual classifier
chains with respect to their weights. This probability can also
be used to sample instances from the ensemble as described
in the previous subsection.

D. Consistency

In the context of density estimation, the aim is to obtain
consistent estimators, where the estimate approaches the true
density with increasing numbers of instances. In the following,
we prove that the estimators from the previous section fulfill
this property. As each of them can be combined with many
different base classifiers, the proof will be independent of
a specific base classifier. Instead, we will prove that the
estimators are consistent as long as the base classifiers are.

First, we consider estimators employing a single classifier
chain. We show that the Kullback-Leibler divergence (KL-
divergence) of the density f and its estimate f̂ tends to 0
for increasing numbers of instances. To improve readability,
we write KL(f, f̂) instead of the KL-divergence of f and f̂ .

Proposition 1: Let f be a discrete joint density with
f(x1, . . . , xn) = f1(x1) · . . . · fn(xn | x1, . . . , xn−1). Further,
let f̂ be an estimator employing a single classifier chain, and let
f̂i be the estimate of the ith classifier in the classifier chain. If
the number of instances tends to infinity and KL(fi, f̂i)→ 0,
for all i ∈ [1;n], then KL(f, f̂)→ 0.

Proof: For increasing numbers of instances, we prove that
KL(f, f̂)→ 0, if KL(fi, f̂i)→ 0 for all i ∈ [1;n]:

KL(f, f̂) =
∑
~x

f̂(~x) · ln f̂(~x)
f(~x)

(3)

For g ∈ {f, f̂}, ln g(~x) can be written as

ln (g1(x1) ·
n∏
i=2

gi(xi | x1, . . . , xi−1)),

where gi corresponds to fi or f̂i. Since ln(a·b) = ln(a)+ln(b),
the KL-divergence of f and f̂ can be written as

KL(f, f̂) =
∑
~x

f̂(~x) · ln f̂1(x1)
f1(x1)

+ . . .

+
∑
~x

f̂(~x) · ln f̂n(xn | x1, . . . , xn−1)
fn(xn | x1, . . . , xn−1)

.

By definition, f̂(x) = f̂1(x1) · . . . · f̂n(xn | x1, . . . xn−1) and,
therefore, the following equalities hold for individual parts of



the sum∑
~x

f̂(~x) · ln f̂i(xi | x1, . . . , xi−1)
fi(xi | x1, . . . , xi−1)

=
∑
~x

n∏
j=1

f̂j(xj | x1, . . . , xj−1) · ln
f̂i(xi | x1, . . . , xi−1)
fi(xi | x1, . . . , xi−1)

=
∑
~x

n∏
j=1,j 6=i

f̂j(xj | x1, . . . , xj−1) ·KL(fi, f̂i).

Hence, if KL(fi, f̂i)→ 0 for all i ∈ [1;n], then KL(f, f̂)→
0.

Hence, estimators employing a single classifier chain are
consistent as long as the underlying base classifiers are.
However, proving this property for individual base classifiers
is not always easy. A Hoeffding tree with Majority Class
leaf classifiers, for example, partitions the instances by the
attributes based on which splits took place and the values of
the attributes. If the Hoeffding tree constitutes a complete tree,
then, according to the law of large numbers, the leaf classifiers
approach the true density of each partition with increasing
numbers of instances. Otherwise, the consistency property is
fulfilled if there is an n0 ∈ N, such that, for each branch,

• there is no further attribute on which the branch can
be split,

• no further pruning takes place, and,

• for each path from the root to a leaf, any series of
further splits does not change the distribution of the
partition belonging to this path.

Next, we extend the statement of Proposition 1 to estima-
tors employing an ensemble of (weighted) classifier chains.

Proposition 2: Let f be a discrete joint density with
f(x1, . . . , xn) = f1(x1) · . . . · fn(xn | x1, . . . , xn−1). Further,
let f̂ be an estimator employing an ensemble of (weighted)
classifier chains, and let f̂i,j be the estimate of the jth classifier
in the ith classifier chain. If the number of instances tends to
infinity and KL(fi, f̂i) → 0 for all i ∈ [1; k] and j ∈ [1;n],
then KL(f, f̂)→ 0.

Proof: Follows immediately from the definition of an
ensemble of (weighted) classifier chains and Proposition 1.
Each classifier chain provides a consistent estimate, so the
weights of the classifier chains do not affect the consistency
of the ensemble.

III. INFERENCE

The estimators presented in Section II can be employed
for representing discrete joint densities. With more and more
instances, the estimate is either approaching the true density
or adapting to concept drifts. However, over time, users are
probably interested in different parts of the density, which
requires infrastructure to pose queries on the joint density. In
this section, we want to demonstrate that the proposed estima-
tors produce estimates that enable such tasks. We consider the
following three settings:

1) Let f be a discrete joint density defined on vari-
ables X := {X1, . . . , Xn}. Further, let Y :=

{Y1, . . . , Yj} ⊂ X and Z := {Z1, . . . , Zk} ⊂ X
be subsets with Y ∩ Z = ∅. Then we can determine
a new density

f ′(Z1, Z2, . . . , Zk | Y1 = y1, . . . , Yj = yj), (4)

where yi is a specific value of Yi, i ∈ [1; k].
2) Let f , X , and Z be as in Setting 1. Further, let Y

be a variable of X for which the user knows that
it takes value y1 with probability p1, value y2 with
probability p2, . . . , and value yl with probability pl.
Then we determine a new density

f ′(Z1, Z2, . . . , Zj | Y ′), (5)

where Y ′ takes the value yi with probability pi, i ∈
[1; l].

3) Let f be as in Setting 1. and θ be a user-defined
value between 0 and 1. Then we determine a new
density f ′, such that, for T =

∑
~x′:f(~x′)≥θ f(~x

′),
f ′(~x) equals f(x)

T for all instances ~x with f(~x) ≥ θ,
and f ′(~x) = 0 for all other instances.

Notice that for the first two settings Y ∪ Z is not necessarily
X , but could be a proper subset. In Setting 1, the user has
hard evidence for certain features and is interested in the
density defined over the features Z1, . . . , Zk. The situation in
Setting 2 is almost the same as in Setting 1, but instead of
hard evidence only soft evidence is available. In Setting 3,
we determine a density that contains all instances exceeding a
certain probability.

In the following, we provide algorithms for these settings.
However, due to space constraints, we are not able to present
our algorithm for Setting 2, which incorporates the given soft
evidence into classifier chains employing Hoeffding trees.

A. Hard Evidence

In order to compute the expression (4), there are two main
tasks that need to be performed: First, setting the variables Yi
to specific values, and, second, marginalizing out variables that
are not contained in Z. In the context of Bayesian networks,
both tasks are usually performed by operating on conditional
probability tables. Here, we want to perform these tasks on the
estimator presented in Section II.

If Hoeffding trees are employed or other classifiers that
built on a tree structure, we can simply disable or remove all
branches of variable Yi that correspond to a value that is not
equal to yi, thereby providing a structure that is very similar
to the original one. However, when it comes to marginalizing
out certain variables, there are only a few special cases in
which the current structure can be used. The problem lies
with the children of the variable to be marginalized out. For
example, if there is a variable Xi ∈ X with Xi 6∈ Y,Z where
the set of descendants of Xi for its value v1 is D1 and the
set of descendants of Xi for its value v2 is D2, then it may
easily happen that D1∩D2 = ∅. Hence, there are no common
variables on which we can merge the branches, and we end up
with a forest instead of a single tree. Even if it were possible
to find a common root, we would only have the counters for
the classifier’s target variable but not the underlying instances.



Algorithm 2 Processes query of Setting 1.
Require: chain cc, sets of variables Y and Z, target perfor-

mance avgLL, step size s
1: initialize result classifier chain result
2: p := avgLL+ 1
3: while p > avgLL do
4: sample := ∅
5: counter := 0
6: while counter < s do
7: inst := sample instance from cc
8: if Yi = yi for all Yi in inst, i ∈ [1; k] then
9: sample := sample ∪ inst

10: counter := counter + 1
11: end if
12: end while
13: for inst in sample do
14: for Zi ∈ Z do
15: remove Zi from inst
16: end for
17: end for
18: result := forward instances from sample to result
19: p := 0
20: for inst ∈ sample do
21: p := p + log(result(inst))
22: end for
23: p := p

s
24: end while
25: return result

Therefore, we propose an approach that is independent of
the underlying classifiers (cp. Algorithm 2): First, we sample
s instances from the current estimate, such that all instances
match the values of the variables in Y (line 4 through 12).
Since we have to skip all sampled instances from cc that do
not fulfill this requirement, we use a counter to ensure that we
sample s instances as required. Then the algorithm removes
all features that are not contained in Z from the instances (line
13 through 17) and forwards them to the target estimator (line
18). Finally, in lines 19 through 23, the average log-likelihood
of sample is computed.

The question is: How many instances do we need to obtain
a reasonably good estimate? To solve this problem, we measure
the performance of the new density estimate every s instances
and compare it to avgLL. Both are either some user-defined
parameters or values that are derived from the current estimate
(e.g., to obtain a value for avgLL, one could compute the
average log-likelihood for the original estimate as starting
point and decrease the resulting value according to some
heuristics). Each time we forwarded another s instances to the
density estimators, we take the next s instances to measure the
average log-likelihood. If a user-defined value is underrun, we
stop. Otherwise, these instances are forwarded to the density
estimator.

Algorithm 2 is easily extended to ensembles of (weighted)
classifier chains by adding an outer loop that iterates over all
classifier chains.

B. Instances Exceeding a Given Probability

Users may be particularly interested in very likely in-
stances. In this case, we need to infer a distribution from
our current estimate that only contains instances exceeding
a certain probability θ. Similarly to Algorithm 2, we do the
following:

1) Draw instances from the current discrete joint density.
2) Check whether this instance exceeds θ. If yes, use

this instance to train the new target distribution.
Otherwise, ignore this instance and go to 1.

Again, we have to specify a stopping criterion for this
procedure that guarantees a certain quality of the resulting
density estimate. As in Setting 1, we can employ the average
log-likelihood to measure the performance. Additionally, we
can also compute the number of instances that are necessary
to include instances of probability θ1 + ε with ε being a
small, positive number close to 0. Given a confidence level
0 < θ2 < 1 and a λ > 0, we can apply the Chernoff bound
[23] and compute the minimal n, such that

θ2 < Pr[X > (1 + λ) · µ] <
[

eλ

(1 + λ)(1+λ)

]µ
,

where µ = n · (θ1 + ε) and and X is the sum of independent
Poisson trials with Pr(X = 0) = 1 − θ1 − ε, Pr(X = 1) =
θ1 + ε.

IV. EXPERIMENTS

In this section, we evaluate the algorithms presented in
Section II on synthetic and real-world data. They have been
implemented in the MOA framework (version 20120301) [24].
In order to compare the performance of the online density es-
timator to existing density estimators, we integrated Bayesian
structure learners from the bnlearn package [25] into our
setting. At the time of writing, it contained

• Constraint-based algorithms: Grow-Shrink (GS), In-
cremental Association (IAMB), Interleaved-IAMB
(Inter-IAMB), Fast-IAMB

• Score-based algorithms: Hill-Climbing greedy search
(HC), Tabu Search (TABU)

• Hybrid algorithms: Max-Min Hill Climbing (MMHC),
Two-Phase Restricted Maximization (RSMAX2)

• Local discovery algorithms: ARACNE, Max-Min Par-
ents and Children (MMPC), Semi-Interleaved Hiton-
PC (SIHPC), Chow-Liu

The networks returned by these algorithms possibly contain
undirected arcs. Therefore, we employ the pdag2dag method
to direct these arcs before estimating the conditional probabil-
ity tables (CPT), which are estimated by the fit method of
the Bayesian network. For the fit method two alternatives are
provided: maximum likelihood (mle) and Bayesian aposteriori
(bayes).

The Bayesian structure learners from the bnlearn pack-
age are offline algorithms, which makes it difficult to compare
them directly with our online density estimator. If the perfor-
mance differs in favor of the Bayesian structure learners, it is



still possible that the same estimators employing offline base
classifier perform better than the Bayesian structure learners.
Therefore, we also implemented our density estimator in the
WEKA framework (version 3.7.6) [26].

To improve readability, we introduce the following nota-
tion: EDDOT (L) and EDDBT , where T ∈ {CC,ECC,
EWCC}, and L ∈ {Maj,NB,NBA}. EDDOT (L) rep-
resents online density estimators employing HoeffdingTree
and EDDB, where the B stands for batch, represents offline
density estimators employing REPTree. The index denotes
the type of density estimator, which is either an estimator
employing a classifier chain (CC), an estimator employing an
ensemble of classifier chains (ECC), or an estimator employing
an ensemble of weighted classifier chains (EWCC). If T is
not specified, it refers to all types. The L specifies the leaf
classifier of the HoeffdingTree, which is MajorityClass (Maj),
NaiveBayes (NB), or NaiveBayes adaptive (NBA).

In order to compare the density estimates, we used the KL-
divergence for synthetic data and the log-likelihood (LL) for
real-world data. Unfortunately, computing the KL-divergence
is computationally expensive, since we have to consider every
possible combination of feature values. For instance, if we
have a Bayesian network with 8 nodes and 7 values each,
then there are already 78 = 5, 764, 801 combinations, for each
of which we have to compute the probability given by the
estimator. This computation is very expensive, so that we can
only consider discrete joint densities with a small number of
nodes and a small number of node values. Notice that, in order
to avoid rounding errors, we computed the KL-divergence
using logarithms [27]. In case of real-world data, we divided
the data set into training and test set, forwarded the instances
from the training set to the estimators, and computed the log-
likelihood on the test set.

A. Noise-free Synthetic Data

In the first experiment, we randomly generated Bayesian
networks using the random.graph method of the bnlearn
package. Its parameter method was set to melancon, which
uses a Markov chain to draw acyclic, directed graphs uniformly
at random [28]. For the experiment, we generated Bayesian
networks with between 4 and 8 nodes, for each of which 100
networks were considered. From these discrete joint densities,
we drew M instances with M being one of the values of
{103, 104, 105, 106}. The instances were forwarded to the
Bayesian structure learners and our online and offline density
estimators.

In order to add the conditional probability tables to the
learned graph structure, all Bayesian structure learners were
combined with the options maximum likelihood (mle) and
Bayesian aposteriori (bayes), which resulted in 24 estima-
tors. However, for reasons of readability, we only compare
our density estimators to the Bayesian structure learner with
smallest KL-divergence, which we determined by ranking them
according to their KL-divergence for each Bayesian network
and each M , computing the total rank sum for each estimator,
and choosing the one with smallest value.

For our online and offline density estimators, we considered
several variants: one with a single random classifier chain,
one with an ensemble of classifier chains, and one with an

TABLE I. THE TABLE SHOWS THE RANK SUM (LOWER IS BETTER) OF
THE BEST BAYESIAN STRUCTURE LEARNER AND THE ESTIMATORS

EDDO AND EDDB WHERE PRUNING WAS NOT DISABLED. IT HAS BEEN
COMPUTED BY RANKING THE ESTIMATOR FOR EACH BAYESIAN NETWORK

AND EACH M AND SUMMING UP THEIR RANKS. THE NUMBER IN
PARENTHESES IS THE ESTIMATOR’S RANK WITH RESPECT TO THE GIVEN
M . BAYESIAN NETWORKS WERE GENERATED WITH BETWEEN 4 AND 8

NODES, FOR EACH OF WHICH 100 NETWORKS WERE CONSIDERED. M IS
THE NUMBER OF INSTANCES THAT WERE DRAWN FROM THE NETWORKS.
FOR ECC AND EWCC, WE USED AS MANY RANDOM CLASSIFIER CHAINS

AS NUMBER OF FEATURES. HC greedy bayes IS THE HILL-CLIMBING
GREEDY SEARCH ALGORITHM EMPLOYING THE bayes METHOD TO

ESTIMATE THE CONDITIONAL PROBABILITY TABLES.

Estimator M = 103 M = 104 M = 105 M = 106

EDDBCC 3183 (05) 2519 (04) 2290 (04) 2624 (05)
EDDBECC 1686 (03) 1122 (01) 1234 (01) 1716 (02)

EDDOCC(Maj) 4936 (12) 4997 (12) 4504 (11) 4133 (09)
EDDOECC(Maj) 4390 (09) 4806 (11) 4311 (10) 3768 (08)
EDDOEWCC(Maj) 3397 (06) 3840 (08) 2942 (05) 2121 (03)

EDDOCC(NB) 4477 (10) 4248 (09) 4793 (12) 4791 (11)
EDDOECC(NB) 4010 (08) 3489 (06) 3697 (07) 3702 (07)
EDDOEWCC(NB) 1620 (02) 1900 (03) 2027 (03) 2231 (04)

EDDOCC(NBA) 3528 (07) 3592 (07) 4167 (08) 4179 (10)
EDDOECC(NBA) 2486 (04) 2706 (05) 3150 (06) 3208 (06)
EDDOEWCC(NBA) 740 (01) 1483 (02) 1655 (02) 1652 (01)

HC greedy bayes 4547 (11) 4298 (10) 4230 (09) 4875 (12)

ensemble of weighted classifier chains. For the ensembles,
we chose a number of chains that is linear in the number
of features, which in this experiment are as many classifier
chains as features. As base classifiers, we considered REPTree
and Hoeffding trees with leaf classifiers MajorityClass (Maj),
NaiveBayes (NB), and NaiveBayes adaptive (NBAdaptive). In
all cases, we considered these classifiers with and without
pruning disabled. (Notice that the MOA implementation of
Hoeffding trees handles pre-pruning differently. For a split,
it simply adds an additional node, which is basically a null
model, to the list of possible candidates and computes the
information gain among them.)

As in the case of the Bayesian structure learners, we
compare the density estimators based on their rank sum, which
has been computed from the rankings that include the best
Bayesian structure learner and our density estimators either
with or without pruning disabled. Since disabling pruning had
only minor effects on the results, we did not include results
with no pruning here. The only noteworthy difference is the
performance of the offline density estimators. If pruning is
disabled, they receive worse ranks.

The results are summarized in Table I and visualized
in Figure 1. Surprisingly, the Bayesian structure learner HC
greedy search with bayes performs worse than our offline
density estimator and most online density estimators. For
further investigation, we took a closer look at the individual
runs and counted how many times an estimator is ranked best.
For M = 103 and M = 104, the Bayesian structure learner
receives the second largest number, and, for M = 105 and
M = 106, it received the largest number. This means that
HC greedy search with bayes performs pretty well on many
Bayesian networks, but at the same time poorly on many
others. These differences can be reduced by restarting the
hill climber several times, thereby decreasing the likelihood of
getting stuck in a local optimum. However, with every restart,



1000

10000

100000

1000000

E
D

D
B

 C
C

E
D

D
B

 E
C

C

E
D

D
O

 C
C

, 
M

a
j

E
D

D
O

 E
C

C
, 

M
a

j

E
D

D
O

 E
W

C
C

 ,
M

a
j

E
D

D
O

 C
C

, 
N

B

E
D

D
O

 E
C

C
, 

N
B

E
D

D
O

 E
W

C
C

, 
N

B

E
D

D
O

 C
C

, 
N

B
A

E
D

D
O

 E
C

C
, 

N
B

A

E
D

D
O

 E
W

C
C

, 
N

B
A

H
C

 g
re

e
d

y
 b

a
y
e

s

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Fig. 1. The figure visualizes the rank sums of Table I by a heat map (lower
is better). The estimators are on the x-axis (with slightly different notation),
and the number of instances is on the y-axis. Low rank sums are represented
by darker colors and high rank sums by lighter colors.

the run-time of the algorithm is also increased.

Next, we compare EDDB to EDDO(Maj). For all M ,
classifier chains and ensembles of classifier chains employing
REPTree have both a lower rank sum than their counterparts
employing HoeffdingTree with Maj. Likewise, ensembles of
weighted classifier chains cannot match the performance of
the offline density estimators. Only in the case M = 106, the
EDDOEWCC(Maj) places itself between EDDBCC and
EDDBECC . To get an idea how the KL-divergence values
for estimators of type EDDB and EDDO differ in general,
we also computed the average KL-divergence for both of them
in dependence of the number of instances. For EDDB, we
observed an average value of 0.094 for 103 instances and 0.007
for 106 instances. For EDDO, we observed 0.463 and 0.059,
respectively.

If we compare the different types of estimators, we observe
that in all cases EWCC performs better than ECC, and
ECC performs better than CC. Considering EDDO(NB)
and EDDO(NBA), we also notice remarkable improvements
when ensembles of weighted classifier chains are employed.
In particular, EDDOEWCC(NBA) has either the lowest or
second lowest rank sum among all density estimators. The only
estimator that performs better for M = 104 and M = 105 is
EDDBECC . In order to measure the improvements that are
achieved by the individual estimator types, we also computed
the average improvement if ECC is used instead of CC and
EWCC is used instead of ECC. In all cases, the former
yields larger improvements than the latter. Dependent on the
underlying base classifiers, we also observe differences in the
increase of the improvements. For a node count of N = 5,
the KL-divergence of EDDOECC(Maj) is on average 25.5
percent smaller than the KL-divergence of EDDOCC(Maj),
and another 27.1 percent smaller if EWCC is used instead of
ECC. In contrast to that, employing NBA as base classifier
yields an improvement of only 4.6 and 24.8 percent for
the corresponding cases. For N = 6, we observe almost
the converse of that, that is, EDDO(NBA) yields larger
improvements than EDDO(Maj).

All in all, this experiment shows that the online density
estimators have a performance that is competitive to the offline
density estimators and that using ensembles of (weighted)
classifier chains is in general beneficial.

B. Run-time

In an online setting where we expect millions of instances
each day, it is not only important to provide a good estimate,
but that the estimator is able process many instances per
second. Therefore, we also measured how many instances can
be processed by each estimator per second. We considered
three settings where the number of instances to be processed
was set to 2 · 105, 2 · 106, and 2 · 107. The instances were
generated from 10 randomly generated Bayesian networks with
8 nodes, each of which has a cardinality between 4 and 8. To
ensure equal conditions, the experiment has been conducted
on a machine with two 3.2 GHz Intel R© Xeon R© CPUs of type
W3565 (4 cores per CPU). For each estimator we restricted
the maximum amount of RAM to 2 GB.

TABLE II. THE TABLE SHOWS HOW MANY INSTANCES ARE
PROCESSED BY EACH ESTIMATOR PER SECOND. WE CONSIDERED THREE

SETTINGS WHERE THE NUMBER OF INSTANCES TO BE PROCESSED, WHICH
IS DENOTED BY M , WAS SET TO 2 · 105 , 2 · 106 , AND 2 · 107 . THE VALUES

IN THE CELLS ARE THE NUMBER OF INSTANCES THAT HAVE BEEN
PROCESSED IN ONE SECOND (THE VALUES ARE ROUNDED), WHERE A ’-’

MEANS THAT THE ESTIMATOR RAN OUT OF MEMORY.

Estimator M
2 · 105 2 · 106 2 · 107

EDDOCC (Maj) 120,894 98,740 48,770
EDDOECC (Maj) 17,703 12,193 5,208
EDDOEWCC (Maj) 13,525 8,297 2,523

EDDOCC (NB) 120,483 96,455 47,175
EDDOECC (NB) 17,853 12,215 5,216
EDDOEWCC (NB) 12,633 8,141 2,485

EDDOCC (NBA) 78,196 59,665 33,778
EDDOECC (NBA) 10,667 6,851 3,465
EDDOEWCC (NBA) 6,583 4,549 1,862

Chow-Liu mle 71,216 96,422 -
Inter-IAMB mle 35,210 37,184 -
SIHPC mle 37,501 35,884 -

The results are summarized in Table II. For reasons of
readability, we only included the best (Chow-Liu with mle) and
worst Bayesian estimators (Inter-IAMB with mle and SIHPC
with mle). In almost all cases, EDDOCC is faster than the
Bayesian estimators (the only exception is EDDOCC with
NBA as leaf classifier). Estimators employing an ensemble of
(weighted) classifier chains, on the other hand, are substantially
slower than the Bayesian estimators if a small amount of
instances has to be processed.

The difference between EDDOCC and the ensemble esti-
mators can be explained by the number of classifiers that are
involved in the estimate. EDDOECC and EDDOEWCC use
eight times as many classifiers as EDDOCC , and since the
estimators have not been optimized for a multi-core architec-
ture, the classifiers are mostly updated sequentially. Adapting
EDDOECC and EDDOEWCC to a multi-core architecture
should provide some remarkable improvements, since all clas-
sifiers can be trained independently. Moreover, EDDOEWCC

can further be improved by computing the weights every l
instances instead of every instance (see Algorithm 1). The



computation of the weights is the only difference between
EDDOECC and EDDOEWCC .

For all chain-based estimators, the number of instances
that is processed within one second decreases with increasing
numbers of instances. Judging from the memory consumption
of the runs, the estimators are still growing after 2 · 106
instances. This decreases the processing speed of the estimator,
as the underlying classifiers become more complex, thereby
making it more expensive to incorporate new instances. If
processing speed is more important than the accuracy of the
estimators, the growth of the classifiers could be restricted,
leading to a faster and overall more constant processing time.

Considering different leave classifiers, we observe only
minor differences between Maj and NB, whereas NBA
can only process between 40 % and 70 % of the instances
processed by Maj or NB per second.

Summarizing the results from the first and this experiment,
we can conclude that EDDOEWCC provides the best estimate
at the expense of run-time. Hence, depending on the number of
instances that need to be processed in the application domain
at hand, the user can choose between a better estimate or a
faster run-time.

C. Influence of Chain Orderings

In the first experiment, we observed that employing an
ensemble of (weighted) classifier chains yields a better perfor-
mance than an estimator employing a single classifier chain. To
investigate the difference between individual classifier chains,
we conducted another experiment: For a node count between
4 and 7 and 10 Bayesian networks for each node count, we
created density estimators employing a single classifier chain
from all possible feature orderings, forwarded 105 instances
from the Bayesian networks to these estimators, and com-
puted their KL-divergence. Note that we chose 105 instances,
since the differences between the classifier chains disappear
with increasing numbers of instances (a consequence of the
consistency property of the estimator). As in the previous
experiment, we ran this experiment with and without pruning
disabled. Since we did not observe any major differences, we
only discuss the runs where pruning was not disabled.

For each node count N and each Bayesian network, we
collected the KL-divergence of all classifier chains, and sorted
them with respect to their KL-divergence. Then we determined
the smallest and largest KL-divergence that we observed for
a particular Bayesian network, and divided the corresponding
interval into 5 segments of equal length. Dependent on their
KL-divergence value, we assigned each classifier chain to one
of five segments, such that the value is between the lower and
upper border of the segment.

First of all, we determined the percentage of classifier
chains that is contained in the segment with smallest KL-
divergence values. For all N and all base classifiers, the
percentage is surprisingly large. However, with increasing N ,
the percentage is gradually getting smaller. For N = 4, the
smallest value we observe is 33% and, for N = 7, the smallest
value is 21%. Next, we determined the percentaged difference
between the classifier chain with largest KL-divergence and
the one with smallest KL-divergence, which is computed with

respect to the larger value. On average, the difference between
the best and worst classifier chain lies between 54% and 86%,
which shows that the choice of the ordering is very important
for the performance of the classifier chain. Since finding the
best ordering is not an easy task, we proposed ensembles
of weighted classifier chain to increase the weight of those
chains that performed well on previous instances. However, an
ensemble can only use the classifier chains that were chosen
randomly at the beginning. So a high likelihood of choosing
a classifier chain from the first segment increases the chances
of having a good chain in the ensemble of classifier chains,
which then enables the ensemble of weighted classifier chains
to increase the weight of this good classifier chain. In our
experiment, the smallest percentage of such classifier chains
was 17% for N = 6. Hence, the likelihood of choosing a
classifier chain from the first segment is 0.67. The largest
percentage is 47% (N = 4) resulting in a probability of 0.92.
Both values are satisfactory, but experiments with larger node
counts are required to make further statements.

D. Noisy Synthetic Data

In the first experiment, the density estimators were directly
created from the instances that were generated by the Bayesian
networks. However, especially in real-world applications, we
have to assume a certain degree of noise in the data, which
means that the instances are partly modified before reaching
the density estimators. To measure their ability to deal with
such data, we repeated the first experiment with different noise
levels. The noise level is the probability that the value of an
attribute is replaced by another value of this attribute, which
we draw uniformly at random. We consider five different noise
levels: 0.1, 0.2, 0.3, 0.4, 0.5. So, if we have a noise level of
0.1 and an instance with 8 attributes, where each attribute has
5 values, then with probability 0.928 ≈ 0.5132 the instance
remains unchanged.

For reasons of readability, we reduced the number of
runs of this experiment and generated 106 instances from
each density, discarding the options 103, 104, and 105. As in
previous subsections, we ran the experiment with and without
pruning disabled. However, for every combination of base
classifier and noise level, disabling pruning yielded worse
results. Therefore, we only included the results where pruning
was not disabled. The best Bayesian structure learner was
the HC greedy algorithm again, but this time the CPTs were
estimated by maximum likelihood estimation.

The results are summarized in Table III, which contains the
average KL-divergence for each base classifier and each noise
level. Density estimators employing classifier chains have an
average KL-divergence of between 0.284 and 0.406 for the
noise level 0.1, whereas HC greedy search with mle already has
0.860. Then, with increasing noise level, the KL-divergence
steadily increases and reaches values between 1.072 and 1.150
(noise level 0.5). The KL-divergence of HC greedy search
with mle increases at a slower pace, but reaches an average
KL-divergence of 1.263 in the end. In all cases, there are
no remarkable jumps from one noise level to another. The
differences between the noise levels appear quite regular.

For real-world applications, noise levels of 0.1 and 0.2 are
perhaps more likely than 0.3, 0.4, 0.5, and density estimators



TABLE III. FOR EACH COMBINATION OF BASE CLASSIFIER AND NOISE
LEVEL, THE TABLE SHOWS THE AVERAGE KL-DIVERGENCE OVER ALL

BAYESIAN NETWORKS. BAYESIAN NETWORKS WERE GENERATED WITH
BETWEEN 4 AND 8 NODES, FOR EACH OF WHICH 100 NETWORKS WERE

CONSIDERED. M IS THE NUMBER OF INSTANCES THAT WERE DRAWN
FROM THE NETWORKS. FOR ECC AND EWCC, WE USED AS MANY

RANDOM CLASSIFIER CHAINS AS NUMBER OF FEATURES. HC greedy search
mle IS THE HILL-CLIMBING GREEDY SEARCH ALGORITHM EMPLOYING

THE MAXIMUM LIKELIHOOD METHOD TO ESTIMATE THE CPTS.

Estimator noise level
0.1 0.2 0.3 0.4 0.5

EDDBCC 0.309 0.535 0.758 0.965 1.150
EDDBECC 0.284 0.512 0.737 0.945 1.130

EDDOCC (Maj) 0.406 0.607 0.784 0.952 1.112
EDDOECC (Maj) 0.382 0.591 0.771 0.943 1.105
EDDOEWCC (Maj) 0.334 0.554 0.748 0.928 1.097

EDDOCC (NB) 0.341 0.527 0.731 0.926 1.111
EDDOECC (NB) 0.291 0.488 0.695 0.896 1.082
EDDOEWCC (NB) 0.260 0.464 0.678 0.883 1.072

EDDOCC (NBA) 0.346 0.541 0.748 0.941 1.116
EDDOECC (NBA) 0.307 0.513 0.722 0.919 1.095
EDDOEWCC (NBA) 0.274 0.486 0.702 0.904 1.086

HC greedy mle 0.860 0.925 1.037 1.147 1.263

employing classifier chains show a significantly better perfor-
mance than HC greedy search with mle for these noise levels.
In particular, EDDOEWCC(NB) has average KL-divergence
values that are less than half of the corresponding values of
HC greedy search with mle.

E. Concept Drift

Another important aspect of density estimation are streams
of drifting distributions. Usually, the instance stream does
not come from a stationary distribution but changes over
time. The MOA framework provides several classifiers that
are able to deal with concept drifts. One such clas-
sifier is HoeffdingTree employing the leaf classifier
NaiveBayes Adaptive, which is also the classifier we
considered for this experiment. The instance stream is con-
structed by MOA’s ConceptDriftStream class. It accepts
two streams and some parameters specifying a window in
which it slowly changes from the first stream to the second
one. The window of the ConceptDriftStream was set to
25, 000, 50, 000, and 75, 000 instances and the central position
of this window to 250, 000. To simulate a concept drift, we
randomly picked two Bayesian networks having the same num-
ber of nodes, where each node has cardinality 5. Afterwards,
we forwarded the instances to our density estimator, measured
the KL-divergence before the probability of switching to the
second Bayesian network is larger than or equal to 0.1, and
counted how many instances are needed until the same KL-
divergence is reached again. Since the rate of convergence
decreases when approaching 0, we also stopped when the
KL-divergence dropped below 0.1. The KL-divergence was
measured every 100, 000 instances.

The results are summarized in Table IV. The differences
between the given window sizes are more prominent for
EDDOCC(NBA) and EDDOECC(NBA), where they vary
from 29, 600 to 185, 200 instances. In both cases, the minimal
number of instances is needed for the window size 50, 000.
For EDDOEWCC(NBA), on the other hand, the differences

TABLE IV. FOR EACH COMBINATION OF DENSITY ESTIMATOR AND
WINDOW SIZE, THE TABLE SHOWS THE AVERAGE NUMBER OF INSTANCE
THAT WERE NEEDED TO TRAIN THE ESTIMATOR WITH INSTANCES FROM
THE FIRST NETWORK AND THEN REACHING THE SAME KL-DIVERGENCE
BEFORE THE PROBABILITY OF A CONCEPT DRIFT EXCEEDED 0.1 OR THE

KL-DIVERGENCE DROPPED BELOW 0.1. BAYESIAN NETWORKS WERE
GENERATED WITH BETWEEN 4 AND 8 NODES, FOR EACH OF WHICH 100

NETWORKS WERE CONSIDERED. M IS THE NUMBER OF INSTANCES THAT
WERE DRAWN FROM THE NETWORKS. FOR ECC AND EWCC, WE USED AS

MANY RANDOM CLASSIFIER CHAINS AS NUMBER OF FEATURES.

Estimator window size
25, 000 50, 000 75, 000

EDDOCC(NBA) 992, 400 807, 200 836, 800

EDDOECC(NBA) 920, 000 769, 600 799, 800

EDDOEWCC(NBA) 944, 000 928, 800 924, 000

are lower and is decreasing with increasing window sizes. In
general, ECC performs best and EWCC worst.

For all density estimators, less than 106 instances are
required until the KL-divergence dropped below 0.1 or the
KL-divergence of the first Bayesian network. However, for a
few pairs of Bayesian networks, the density estimator needs
more than 107 instances. This usually happens if the first
network is easier to estimate than the second one. In one
particular example, there are two Bayesian networks each
of which exhibiting 8 nodes. After 250, 000 instances, the
density estimator reaches a KL-divergence of 0.210 for the
first network and a KL-divergence of 0.567 for the second one.
In our experiment, the density estimator requires 10, 700, 000
instances for the same pair of Bayesian networks. But after
1, 321, 281 instances it reached a KL-divergence of 0.491,
which is already less than the KL-divergence we computed
for the second network after 250, 000 instances.

In summary, the density estimators require on average
between two and three times as many instances as they would
when learning a stationary distribution. This also includes
cases where the second network is harder to estimate, which
has a larger influence on the number of instances than having
a pair of networks where the first one is harder to estimate.

F. Real-World Data

Finally, we tested the online density estimators on two real-
world data sets from the UCI repository: the US census data
set1, which is relatively large with 2, 458, 285 instances and
68 categorical attributes, and the Covertype data set2, which
has 581, 012 instances and 54 attributes. Since the Covertype
data set contains 10 integer valued attributes, we discretized
the data as follows: attributes measured in meters are divided
in segments of 500 meters, attributes measured in degrees are
divided in segments of 60 degrees, and attributes measuring
the Hillshade index are divided in segments of size 32.

For comparison, we considered the Bayesian structure
learners from the first experiment. Since some of them either
required more than 15 hours of computing time or were not
able to represent the Bayesian network due to large CPTs,
we did not include these Bayesian structure learner in the
results. Among the remaining Bayesian structure learners, we

1 http://archive.ics.uci.edu/ml/datasets/US+Census
+Data+(1990)

2 http://archive.ics.uci.edu/ml/datasets/Covertype



selected the best one for each data set. The performance of
the estimators was measured with the average log-likelihood.
The first half of the instances were forwarded to the density
estimators, and the remaining instances were used to compute
the average log-likelihood. Contrary to the first experiment, we
only allowed 10 classifier chains for each ensemble. Using the
number of attributes instead, the ensembles would consist of
68 and 54 classifier chains respectively, which would increase
the memory consumption significantly (almost a factor of 7).

TABLE V. THE TABLE SHOWS THE AVERAGE LOG-LIKELIHOOD OF
THE DENSITY ESTIMATORS FOR TWO REAL-WORLD DATA SETS: US

CENSUS AND COVERTYPE. FOR ECC AND EWCC, WE USED 10 RANDOM
CLASSIFIER CHAINS. mle IS THE MAXIMUM LIKELIHOOD ESTIMATION

METHOD, WHICH IS USED TO ESTIMATE THE CPTS.

Estimator US Census Covertype

EDDOCC(Maj) −23.5 −13.2
EDDOECC(Maj) −23.0 −12.9
EDDOEWCC(Maj) −23.0 −12.9

EDDOCC(NB) −28.6 −12.4
EDDOECC(NB) −25.1 −11.8
EDDOEWCC(NB) −25.1 −11.8

EDDOCC(NBA) −23.8 −12.4
EDDOECC(NBA) −22.9 −11.9
EDDOEWCC(NBA) −22.9 −12.0

TABU mle −45.3 −114.3
RSMAX2 mle −55.5 −43.5

The results are summarized in Table V. On the US Census
data set, the Bayesian structure learner TABU with mle has the
smallest average log-likelihood among all density estimators,
and, on the Covertype data set, RSMAX2 with mle has the
smallest value, which in both cases is substantially smaller than
the values of the online density estimators. The Covertype data
set seems to be particularly difficult to estimate. The Bayesian
networks that were learned for this data set contain several
CPTs in which many rows contain almost the same probability
(e.g., five times 0.2 or eight times 0.125). Moreover, the run-
time of the Bayesian structure learners depends heavily on the
data set from which the instances are drawn. Whereas most
learners were able to process the US Census data set within
minutes, on the Covertype data set, some of them needed many
hours or were not able to process the data set at all.

For the online density estimators, we observe only small
differences between the various base classifiers. NB seems to
yield the best performance and NBA is either on the same
level as Maj or slightly better. Similarly, differences between
the ensemble methods are also rather small. As in the first
experiment, the ensemble method still performs better than
using a single classifier chain. However, there is very little
difference between ECC and EWCC.

V. CONCLUSIONS

In this paper, we proposed three online algorithms to
estimate discrete joint densities: one that uses a random
classifier chain, one that uses an ensemble of random classifier
chains, and one that uses an ensemble of weighted random
classifier chains. We proved the consistency of their estimates
and proposed algorithms to perform certain inference tasks
on the estimates. The results of the experiments showed that
their performance on synthetic data and real-world data is

competitive to offline density estimators, that the estimators
are able to deal with noisy data, and that the density estimates
are able to adapt to concept drifts.

In future work, we would like to work on faster and more
sophisticated inference algorithms that solve a broader range of
inference tasks and would also like to extend the work towards
continuous joint densities and conditional densities.

REFERENCES

[1] P. Ram and A. G. Gray, “Density estimation trees,” in Knowledge
Discovery and Data Mining, 2011, pp. 627–635.

[2] S. Davies and A. W. Moore, “Interpolating conditional density trees,”
in Uncertainty in Artificial Intelligence, 2002, pp. 119–127.

[3] V. Vapnik and S. Mukherjee, “Support vector method for multivariate
density estimation,” in Neural Information Processing Systems, 1999,
pp. 659–665.

[4] M. P. Holmes, A. G. Gray, and C. L. I. Jr., “Fast nonparametric
conditional density estimation,” CoRR, vol. abs/1206.5278, 2012.

[5] E. Frank and R. R. Bouckaert, “Conditional density estimation with
class probability estimators,” in ACML, 2009, pp. 65–81.

[6] F. Buchwald, T. Girschick, E. Frank, and S. Kramer, “Fast conditional
density estimation for quantitative structure-activity relationships,” in
AAAI, 2010.

[7] J.-N. Hwang, S.-R. Lay, and A. Lippman, “Nonparametric multivariate
density estimation: a comparative study,” IEEE Transactions on Signal
Processing, vol. 42, no. 10, pp. 2795–2810, 1994.

[8] D. W. Scott and S. R. Sain, Multi-Dimensional Density Estimation.
Amsterdam: Elsevier, 2004, pp. 229–263.

[9] M. Kristan and A. Leonardis, “Online discriminative kernel density
estimation,” in International Conference on Pattern Recognition, 2010,
pp. 581–584.

[10] M. Kristan, A. Leonardis, and D. Skocaj, “Multivariate online kernel
density estimation with gaussian kernels,” Pattern Recognition, vol. 44,
no. 10-11, pp. 2630–2642, 2011.

[11] C. G. Lambert, S. E. Harrington, C. R. Harvey, and A. Glodjo, “Efficient
on-line nonparametric kernel density estimation.” Algorithmica, vol. 25,
no. 1, pp. 37–57, 1999.

[12] A. Zhou, Z. Cai, L. Wei, and W. Qian, “M-kernel merging: Towards
density estimation over data streams,” in In Proc. of DASFAA, 2003,
pp. 285–292.

[13] A. Elgammal, R. Duraiswami, and L. S. Davis, “Efficient kernel density
estimation using the fast gauss transform with applications to color
modeling and tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, pp. 1499–1504, 2003.

[14] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Learning, vol. 85, no. 3, pp.
333–359, 2011.

[15] K. Dembczynski, W. Cheng, and E. Hüllermeier, “Bayes optimal mul-
tilabel classification via probabilistic classifier chains,” in International
Conference on Machine Learning, 2010, pp. 279–286.

[16] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Knowledge Discovery and Data Mining, 2000, pp. 71–80.

[17] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Knowledge Discovery and Data Mining, 2001, pp. 97–106.

[18] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Machine Learning,
vol. 36, no. 1-2, pp. 105–139, 1999.

[19] E. Frank and S. Kramer, “Ensembles of nested dichotomies for multi-
class problems,” in ICML, 2004.

[20] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[21] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, no. 4, pp. 327–335, 1995.



[22] A. Gelman and D. Rubin, “Inference from iterative simulation using
multiple sequences,” Statistical Science, vol. 7, pp. 457–511, 1992.

[23] R. Motwani and P. Raghavan, Randomized algorithms. New York, NY,
USA: Cambridge University Press, 1995.

[24] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl, “Moa: Massive online analysis, a framework for stream
classification and clustering,” Journal of Machine Learning Research -
Proceedings Track, vol. 11, pp. 44–50, 2010.

[25] M. Scutari, “Learning Bayesian networks with the bnlearn R package,”
Journal of Statistical Software, vol. 35, no. 3, pp. 1–22, 2010.

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[27] T. P. Mann, “Numerically stable hidden Markov model implementation,”
An HMM scaling tutorial, pp. 1–8, 2006.

[28] G. Melançon and F. Philippe, “Generating connected acyclic digraphs
uniformly at random,” Inf. Process. Lett., vol. 90, no. 4, pp. 209–213,
2004.


