
Polynomial-Time Algorithms for Learning Typed
Pattern Languages

Michael Geilke1 and Sandra Zilles2

1Johannes Gutenberg University Mainz

2University of Regina

March 08, 2012

1

Learning from positive data

Let L be a set of languages, L ∈ L be the target language.

Learner M

2

Learning from positive data

Let L be a set of languages, L ∈ L be the target language.

Learner M

2

Learning from positive data

Let L be a set of languages, L ∈ L be the target language.

Learner M

2

Learning from positive data

Let L be a set of languages, L ∈ L be the target language.

Learner M

2

Learning from positive data

Let L be a set of languages, L ∈ L be the target language.

Learner M

2

Pattern Languages

Σ = {a, b, ...} be a finite set of terminal symbols with |Σ| ≥ 2
X = {x1, x2, ...} be a countable set of variables such that Σ∩X = ∅

Informal definition (Angluin)

A pattern is any finite string over terminal symbols and variables.
The language of a pattern p is the set of all words that result from
substituting all variables in p by strings of terminal symbols.

Example

Σ = {a, b, c}

p = (ab)3 x1 x2 b2c4 x3 b3

3

Pattern Languages

Σ = {a, b, ...} be a finite set of terminal symbols with |Σ| ≥ 2
X = {x1, x2, ...} be a countable set of variables such that Σ∩X = ∅

Informal definition (Angluin)

A pattern is any finite string over terminal symbols and variables.
The language of a pattern p is the set of all words that result from
substituting all variables in p by strings of terminal symbols.

Example

Σ = {a, b, c}

p = (ab)3 x1 x2 b2c4 x3 b3

3

Pattern Languages

Σ = {a, b, ...} be a finite set of terminal symbols with |Σ| ≥ 2
X = {x1, x2, ...} be a countable set of variables such that Σ∩X = ∅

Informal definition (Angluin)

A pattern is any finite string over terminal symbols and variables.
The language of a pattern p is the set of all words that result from
substituting all variables in p by strings of terminal symbols.

Example

Σ = {a, b, c}

θ(p) = (ab)3 a4 ba b2c4 c3 b3

3

Typed Pattern Languages

Bibliographic data entry system:

Author: x1, Title: x2, Year: x3

Introduction of types

Each variable has exactly one type: T := {t1, t2}

Lt1 = Σ+,
Lt2 = {1900, . . . , 2100} ∪ {ε}

Xt1 := {x1, x2},
Xt2 := {x3}

4

Learning Pattern Languages Efficiently - Problems

The membership problem

Given: pattern p, word w
Question: does p generate w?

Theorem (Angluin)

The membership problem for the class of untyped pattern languages
is NP-complete.

 avoid membership tests during the learning process

5

Learning Untyped Pattern Languages (1)

Theorem (Lange and Wiehagen)

The class of untyped pattern languages as introduced by Angluin can
be learned in polynomial time.

Idea: Only take words of shortest length to infer the pattern.

Example

Σ = {a, b}, Lt = Σ+

aaabbaab
aabaaabbbbbbabaaaab
aabbbaab
ababbbab
abbbbbaaabbbbbbbaaab
abbbbbbbbab

6

Learning Untyped Pattern Languages (1)

Theorem (Lange and Wiehagen)

The class of untyped pattern languages as introduced by Angluin can
be learned in polynomial time.

Idea: Only take words of shortest length to infer the pattern.

Example

Σ = {a, b}, Lt = Σ+

aaabbaab
aabaaabbbbbbabaaaab
aabbbaab
ababbbab
abbbbbaaabbbbbbbaaab
abbbbbbbbab

6

Learning Untyped Pattern Languages (1)

Theorem (Lange and Wiehagen)

The class of untyped pattern languages as introduced by Angluin can
be learned in polynomial time.

Idea: Only take words of shortest length to infer the pattern.

Example

Σ = {a, b}, Lt = Σ+

aaabbaab
aabaaabbbbbbabaaaab
aabbbaab
ababbbab
abbbbbaaabbbbbbbaaab
abbbbbbbbab

6

Learning Untyped Pattern Languages (2)

Why is the set of shortest words sufficient?

There is a subset Sp of L(p) with |Sp| ≤ 2|p| such that Sp is a
characteristic set with respect to the set of untyped pattern languages.

a x1 x2 bb x1 ab

a a a bb a ab
a b a bb b ab

a a a bb a ab
a a b bb a ab

 de la Higuera’s characteristic sets

7

Learning Typed Pattern Languages (1)

For typed pattern languages this does no longer work in general!

Example

Σ := {a, b}, t1 := {a, b} and t2 := {aa, ab, ba, bb, aaa, bbb}
p := x(t1,1) x(t2,1)

q := x(t1,1) x(t1,2) x(t1,3)

L(p) and L(q) have the same set of shortest words, S := {aaa, aab,
aba, abb, baa, bab, bba, bbb}, but

L(p) = S ∪ {aaaa, baaa, abbb, bbbb} 6= S = L(q).

8

Learning Typed Pattern Languages (2)

Type Witnesses

Let T be a set of subsets of Σ+. (ω1, ω2) is a type witness for T if

ω1, ω2 : T → Σ+ are mappings

ω1(t) 6= ω2(t) and {ω1(t), ω2(t)} ⊆ t \
⋃

t′∈T \{t} t ′ for all t ∈ T
and some technical conditions are fulfilled

Example (details omitted)

T = {t1, t2, t3} with

t1: positive integers

t2: floats

t3: text

(ω1(t1), ω2(t1)) = (1, 2)

(ω1(t2), ω2(t2)) = (3.0, 4.0)

(ω1(t3), ω2(t3)) = (a, b)

9

Learning Typed Pattern Languages (3)

To infer the pattern, use words that result from substitutions that
replace all variables by their type witnesses.

Terminal-free patterns

The properties of a type witness allow us to decompose words into
type witnesses in polynomial time:

words are processed from left to right

a prefix of the remainder of the word is matched to a type witness

w2 w3

∈W ∈W

w1

∈W

10

Results (1)

Theorem

Let T be a finite set of decidable subsets of Σ+ that has a type
witness. Then the class of all non-erasing T -typed pattern languages
that are generated by terminal-free patterns is polynomially
learnable from positive data.

Sketch of Algorithm

1 decompose words into type witnesses

2 select words with shortest decomposition

3 use decompositions to infer the pattern

11

Results (2)

Theorem

Let T be a finite set of decidable subsets of Σ+ that has a short
type witness. Then the class of all non-erasing T -typed pattern
languages is polynomially learnable from positive data.

More results

some classes with infinite sets of types are polynomially
learnable from positive data

some classes of typed pattern languages are also polynomially
learnable from positive data by a consistent learning algorithm

12

	Preliminaries
	Learning Model
	Pattern Languages
	Learning Untyped Pattern Languages

	Learning Typed Pattern Languages

