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Abstract—Traditional pattern mining algorithms require ac-
cess to the data, either in the form of a complete set of data, as
in batch data mining, or in the form of a window of recent data,
as in stream mining. In the case of stream mining, this comes
with a number of disadvantages, such as the possibly unbounded
growth of relevant instances, drift, possibly changing data mining
tasks, and issues with privacy, to name a few. Therefore, an
approach has been recently proposed that extracts patterns just
from statistical information of the stream — more precisely, an
online density estimate that is inferred from it. As this approach
is mainly based on sampling from the density estimates, it still
struggles with itemsets having a medium to low frequency. To
resolve this issue, we pursue an alternative strategy in this paper
and directly exploit the structure of the density estimates to
extract frequent itemsets. Additionally, we address the important
matter of privacy-preserving data mining by ensuring that the
density estimate fulfills privacy-related properties. To show the
effectiveness of the proposed methods, we provide proofs and
evaluate the performance on synthetic and real-world data.

I. INTRODUCTION

Traditional data mining algorithms operate on the data
itself, which poses problems in data stream settings, where
the amount of data is often too large to be kept in memory.
Established solutions try to avoid memory limitations by
pursuing window-based approaches, but they implicitly assume
that collecting the data and performing the data mining task
is either happening simultaneously or with a small temporal
delay. Hence, the user has to know in advance, i.e., before col-
lecting the data, which data mining task she wants to perform
— something which is unrealistic in interactive environments
where data streams may need to be analyzed after days or even
weeks. For example, after performing pattern mining, the user
discovers that she is only interested in patterns contained in a
particular subset of the data. A window-based solution would
require to initiate another pattern mining process and to wait
for new data instances to complete the task. Hence, knowledge
can only be extracted at the time of collecting the data.

Therefore, the MiDEO framework [1] has been recently
proposed, in which knowledge is available in form of an
online density estimate representing the joint density of the
data stream and can be accessed using inference operations.
This way, frequent itemsets can be derived without accessing
the original data, while also supporting different user roles and
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providing a clear separation of concerns [1]. For example, a
company not having any expertise in the area of data mining
could use a density estimator to estimate the joint density of
its data stream f. Subsequently, it modifies f to meet certain
privacy concerns and sends the result to a data scientist, who
can use her expertise to provide an in-depth analysis.

Although the privacy aspect of this framework has been
pointed out before, there is still no algorithm providing any
privacy-related guarantees. There is only a certain level of
privacy-preservation, because the density estimate solely con-
tains statistical information. Another problem is the mining
process itself, as the corresponding pattern mining algorithm,
called POEt (Pattern mining on Online density esTimates)
[1], produces itemsets by constantly transforming the estimate
and by sampling attribute-value combinations. Therefore, it
struggles with itemsets having a medium to low frequency,
since they require a large number of samples. To address these
issues, we propose a novel approach for effectively performing
privacy-preserving itemset mining on data streams: (1) Unlike
POEt, the presented algorithm does not pursue a sampling-
based approach but exploits the structure of the estimate to
construct the required itemsets. To show its effectiveness, we
will prove that, under certain assumptions, it is able discover
every frequent itemset. (2) We propose an algorithm to achieve
t-closeness [2] for online density estimates, which protects
small entity groups by bringing local distributions of sensitive
variables closer to the global counterparts.

In the remainder of this paper, we formally introduce the
problem (Section II), define relevant concepts (Section III), and
present related work (Section IV). Subsequently, we present an
algorithm to modify an online density estimator to ensure t-
closeness (Section V) and an algorithm that mines itemsets
from the structure of online density estimates (Section VI).
The paper concludes with the evaluation and a conclusion.

II. PROBLEM STATEMENT

Traditionally, an itemset specifies the items that are in-
cluded in a given transaction. In this paper, we consider
a more general setting where an item is a variable taking
several values. Let X := {Xi,Xs,...,X,,} be a set of
discrete variables with finite domains values(X;), i.e., X;
takes the values v € values(X;). Further, let S := #1, 2, ...
be a stream of instances coming from the same probability
distribution, where #; = {(X;,v;) | 1 < j < m} is a set of
variable-value combinations. An itemset is a subset I C ¥ and
its support is the relative frequency of I in S.



TABLE I: The table summarizes the notation of this paper.

Notation

values(X) with X € X

{(Xj,v5) | € [1;m], v; € values(X;)}
itemset C &

freq(itemset)

0

Meaning

domain of X

an instance &

an itemset

support of itemset
minimum support threshold

Fs={iCZ|ZcSA freq(i) >0} frequent itemsets

L:=l1,...,1] a list of elements
L] :=1; i-th element of L
L[i:j]:=[lL, ..., 1] sublist

node € T node of tree T

true iff is node a root
true iff is node a leaf
all direct successors
distribution of children
distribution of class

node.isRoot()
node.isLeaf()
node.children()
node.distribution()
node.classDistribution()

The goal is to find Fs ={I CZ | Z € S A freg(I) > 0},
while also preserving privacy-preserving properties such as t-
closeness [3]. In contrast to other approaches, which compute
F(S) directly from S, we first compute a density estimate f
from S, modify f to meet privacy-preserving properties, and
then compute F(S) from f.

III. BACKGROUND

The online density estimator used in this paper, called
EDDO, represents joint densities using classifiers [4]. It
builds on the product rule and expresses a joint den-

sity f(Xy,...,Xm | Yi1,...,Y;) as products of condi-
tional densities, such that f(Xi,...,X,, | Y1,...,Y)) =
AKX Y, ) T, fi(XG | YA, Y, X, X ).

To model the density f, it is sufficient to model the
density f1(X1 | Yi,...,Y;) and the densities f;(X; |
Yi,..., Y, Xq,...,X;-1), i € {2,...,m}. For the individual
densities f;, 1 < ¢ < m, it employs classifiers that return class
probability estimates and, in particular, Hoeffding trees [5].
To increase the robustness of the estimate, the authors also
considered an ensemble of classifier chains, where each chain
used a different variable ordering.

As it is assumed that users are not only interested in the
full density but also specific parts, EDDO provides infrastruc-
ture to pose queries such as drawing instances, incorporating
hard evidence, incorporating soft evidence, marginalizing out
variables, and determining the density value of an instance
(with respect to the given evidence) [4]. Density estimators
supporting these inference operations constitute a probabilistic
condensed representation of data on which data mining tasks
such as pattern mining can be performed [1].

IV. RELATED WORK

In this section, we present related work from the area of
pattern mining and privacy-preserving data mining.

A. Pattern Mining

When applying itemset mining to real-world domains, users
are often confronted with large volumes of frequent itemsets,
easily outnumbering the data items themselves. Scanning these
volumes is in many cases neither possible nor desired, so
that a lot of research focused on finding so-called condensed

representations. Such a representation is supposed to consist of
substantially fewer itemsets from which all frequent itemsets
can be derived. First steps in this direction have been under-
taken by Mannila and Toivonen [6], who proposed positive and
negative borders. Although all frequent itemsets can be derived
from them, the frequencies of non-border elements are lost.
To solve this issue, other types of representations have been
proposed [7], [8], [9], [10], [7], but it can still happen that too
many itemsets are presented to the user. Therefore, researchers
relaxed the definitions by introducing a parameter § to control
the size of the condensed representations while still allowing
to derive most of the frequent itemsets [11], [12], [10]. This,
however, comes at the cost of no longer having exact support
values for the itemsets. Only if § equals 0, exact support values
can be computed. For § > 0, the support can only be computed
with an error depending on § [10], [11]. Deriving the support
of other itemsets has also been the main focus of other types
of condensed representations [8], [13], [14]. However, all of
these approaches used itemsets to derive other itemsets, which
is different from our approach.

With the increasing importance of data streams, researchers
also addressed the problem of finding frequent itemsets from
data streams. Most approaches either introduce some kind of
decay rate to diminish the influence of old transactions or use a
window [15]. But common to all of them is the underlying pro-
cedure of extracting itemsets when scanning the data stream.
A popular method using a sliding window is Moment [16],
which uses an in-memory prefix-tree-based data structure to
represent four types of nodes indicating whether an itemset is
infrequent, a potential candidate of becoming a frequent closed
itemset (unpromising or promising), or a frequent closed
itemset. Deviating from this approach of directly scanning the
data stream, Geilke et al. [1] recently proposed the MiDEO
framework, which is centered around a probabilistic condensed
representation of the data estimating the joint density of the
data stream. Due to inference operations, it provides sufficient
information about the data to enable pattern mining, which the
authors demonstrated with POEt [1].

B. Privacy-Preserving

Privacy-preserved association rule mining can be classified
into two main directions: association rule mining on perturbed
data and association rule hiding. Most of the work, however,
is more concerned with hiding rules.

The objective of association rule hiding is to return only
non-sensitive association rules to the user. To accomplish this
task, most approaches either sanitize the transactions of a
database or sanitize the rules returned by mining algorithm.
The latter usually means deleting association rules until no
sensitive rules can be inferred from the remaining ones [17],
whereas the former requires to change the support or the
confidence of a rule [18]. However, performing data san-
itization to hide association rules is an NP-hard problem
[19]. Therefore, many pursued heuristic approaches to hide
association rule by sanitization. Atallah et al. [19] and Oliveira
et al. [17] suggested a heuristic method that removed sensitive
association rules based on the structure of the itemset graph.
It continues until no sensitive rule is returned and none of the
rules can be used to infer sensitive rules. Other approaches
directly changed the transactions to influence the supports of
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Fig. 1: The figure illustrates how the probability distributions
of the movielens dataset differ for certain entity groups. At
the top is the global distribution of the sensitive attribute
occupation. Below are the distribution of the same attribute
for entities of age 0—24, 25—49, and 50—75, respectively.

the itemsets [18], [20], [18], [20]. Jain et al. [21], on the
other hand, suggested to directly change the left- and the right-
hand side. In the context of frequent itemset mining, Sun and
Yu [22] used the border to monitor the effect of changing
transactions in the database. Gkoulalas-Divanis and Verykios
[23] also pursued a border-based approach, but they formulate
the hiding of rules as a constraint satisfication problem, which
they solved by binary integer programming.

The method proposed in this paper can be seen as a com-
bination of data perturbation and rule sanitization. Similarly to
typical data perturbation techniques, it hides information about
individual entities by only maintaining a statistical model. At
the same time, however, it also guarantees that no sensitive
pattern is disclosed that can be associated with a small group
of entities, which is similar to rule sanitization techniques.

V. PRIVACY-PRESERVING EDDO ESTIMATES

In this section, we discuss how EDDO estimates can be
modified to preserve the privacy of the entities described by
the data. Due to space constraints, we only focus on t-closeness
and do not present our algorithm for k-anonymity.

Let O be a set of sensitive attributes that could be used
to identify entities. t-closeness basically demands that, for
a certain variable-value combination, the distribution of a
sensitive variable does not deviate more than a threshold ¢
from the corresponding global distribution [2]. The attributes
in Q are called quasi-identifiers and are typically something
like age, gender, or occupation. Figure 1 gives an example of
the effect of the t-closeness property. To ensure t-closeness for
an EDDO estimator, it suffices to perform two types of actions:

Algorithm 1: t-closeness

Input: EDDOEcc fece, sensitive attributes Q, the accepted deviation
from the global distribution 9, the percentaged difference by which a
distribution is changed step

Output: f’ preserving t-closeness

1 for Q € Q do

P )

3 N < collect nodes associated with Q
4 for node € N do

// determine node distribution

5 if node.isLea f() then

6 d <+ node.getClassDistribution()

7 else

8 d < node.getEdgeDistribution()
// reduce distance |[|g—d|

9 while ||§ — d|| > 6 do

10 for 1 < i < wvalues(q) do

¢+ gli] — dl[q]
dfi] « dfi] + - 2

a) Adapting the edge weights: Between a node node
and its children are edges. Each edge has a weight representing
the probability of following this edge to the corresponding
child. Hence, the successor of node is described by a prob-
ability distribution d over its children. If node € Q and d
deviates by more than ¢ from the global distribution g, d can
be adapted accordingly.

b) Adapting the class distributions:: Some Hoeffding
trees have a sensitive variable as a class attribute. If the
class distribution d deviates by more than ¢ from the global
distribution g, d is adapted accordingly.

The global distribution of a variable ) € Q can be
easily estimated by computing § = f(X), i.e., the variables
X'\ {Q} have been marginalized out. To compute the distance
between the estimate of the global distribution § and f,
there are several well-known distance measures on discrete
probability distributions such as the variational distance or the
KL-divergence. However, the authors who proposed the notion
of t-closeness [2], suggested to use the Earth Mover’s Distance
instead (also known as the Wasserstein metric or Kantorovich
metric [24]) In this paper, we do not assume a specific distance
measure and simply write || - || for the distance.

Algorithm 1 formalizes these ideas. It corrects the proba-
bility distributions for every quasi identifier Q € Q (line 1). In
particular, it determines the global distribution g of @ (line 2)
and then considers every node that is associated with ¢ (line
2-4). If it is a leaf, @ is the class attribute of the Hoeffding
tree and it takes the class probabilities (line 6). If it is an inner
node, it considers the distribution of its outgoing edges (line
8). Subsequently, it measures the distance between the global
distribution g and the node distribution d (line 10). If it is
larger than the given threshold 4, it corrects d until ||g — d||
is below §. To do so, it changes each component of d towards
g by iteratively correcting it by a factor of Sltgé’ (lines 10-
12). Theorem 1 states that Algorithm 1 turns a given EDDO
estimator into an estimator preserving t-closeness.

Theorem 1. Let fECC be an EDDO estimate, Q be a set
of quasi identifiers, and 6 be a threshold for the accepted
deviation from the global distribution. Algorithm 1 ensures that
fEcc preserves t-closeness for all Q € Q.

Proof: (proof by contradiction) Let Q be the set of quasi



identifiers and let G be a group of entities that is given
by some evidence (Zi,v1),...,(Z;,v) with Z; € X and
v; € values(Z;), 1 < i < [. Assume that the probability
distribution of a random variable () € Q deviates more
than ¢ from ]ijCC(Q | 2y = v,..., 72 = v), ie,
1fecc(Q) = fecc(@ | Z1 = vi,..., 2 = v)| < 6.
Algorithm 1 guarantees that the corresponding deviation for
every node in f’ is always smaller than or equal to §. Hence,
in order to enforce a deviation of more than §, one needs to
combine paths from several trees. Let (Z1,v1), ..., (Z;,v1) be
a combination for which JNECQ(Q | Zy = v1,..., 2 = vp)
deviates more than ¢ from ff,-(Q). Relevant paths are
those that start at the root, end at a leaf, and contain all
elements from P := {(Z1,v1),...,(Zi,v;)}. Relevant nodes
N are the ones contained in the largest suffix not contain-
ing any element from P. Hence, for each Hoeffding tree
ht in froe. the conditional probability froo(Q | Z1 =
V1, ..., 2y = vp) tesults from Yo weight(C)-weight(ht)-
distribution(node), where weight(C') is the weight induced
by soft evidence and weight(ht) is the weight of classifier
chain to which ht belongs. Hence, || fpcc(Q) — froc(Q |

Zl - Ulv"';Zl = Ul)” - Zcej\/wc : ||f/ECC(Q) -

o ight(C)-weight(h
distribution(C)||, where we = ZCzjffi’u;i;hig”cef_i;(g;g(ht).

Since || fioo(Q) — distribution(C)|| < ¢ for all ¢ € N
and w, < 1, it follows that || frcc(Q) — frec(@ | Z1 =
v1,...,2; = vy)|| < 4. Since all choices were arbitrary, this
contradicts the initial assumption. ]

Due to the nature of the modifications, the representation
is possibly less accurate. Regarding data privacy, however, this
is not only acceptable but actually desired — at least from the
viewpoint of the entities described by the data.

VI. PRIVACY-PRESERVING ITEMSET MINING

Given an EDDO density estimate, Geilke et al. [1] showed
that they contain sufficient information to discover the frequent
itemsets of the data using inference algorithms. In this section,
we show that that their approach can be improved by exploiting
the structure of EDDO estimates.

Frequent itemsets are variable-value combinations exceed-
ing a probability threshold 6. The probabilities of these com-
binations are contained in the classifier chains of EDDO
estimates and can be computed by following the correct
paths in its Hoeffding trees — from the roots to the leaves.
Although each tree is only responsible for predicting the
conditional probability of a given variable, it implicitly pro-
vides information about other variables through its inner
nodes: Let f(X; | Xi,...,X;-1) be a conditional den-
sity that is represented by a Hoeffding tree ht. Further, let
path = nodey, edge;,nodes, edges, . . ., edge;, node; be a
path from the root (node;) to a leaf (node;), where each
node; corresponds to a variable and each edge; corresponds
to a value that node; can take. Then f(X; | Xi,...,X;_1)
is the density of the values of X; given the variable values
of path. By construction of ht, each node on the path tries
to make f(X; | X1,...,X;_1) as discriminating as possible,
i.e., choosing variables that allow to distinguish between values
with low probability and those with high probability. The inner
nodes of the resulting tree yield a partitioning of the data

Iteration 1 Iteration 2

Iteration i

Fig. 2: At the top are the Hoeffding trees of a classifier chain.
The red path shows one path that is turned into a itemset
candidate. At the bottom is the merging, where the itemsets
for iteration ¢ + 1 are constructed by combining the itemsets
of iteration ¢ with the ones from the previous iterations.

instances and the paths specify which values the variables
should take to obtain certain probabilities. Hence, combining
the paths from all trees would enable a direct construction of
itemsets that is guided by the structure of the density estimate.

Pursuing this idea, we propose ISON (Itemset Mining on
the Structure of Online deNsity estimates) in this section,
which exploits this structure to guide the construction of item-
sets (illustrated by Figure 2 and Algorithm 2): Unlike the well-
known Apriori algorithm, which first constructs 1-itemsets,
then 2-itemsets, ..., ISON immediately constructs itemsets of
different length. It iterates over all Hoeffding trees and turns
theirs paths into itemset candidates (lines 4 — 11). Candidates
for which filter returns false are neither relevant for the
output nor for future iterations and are therefore removed as
early as possible. Extracting paths from the Hoeffding trees
and filtering them is considered as iteration 1. Then it starts
merging already found itemsets to larger ones by computing
the union over the items of each merge partner (lines 12 —20).
In the beginning, when only one iteration exists, the itemsets
from the Hoeffding trees are merged pair-wise. For iteration
1+1, ISON will take every itemset from iteration ¢ and merges
it with every itemset from the iterations j < i. As in the case
of iteration 1, each candidate needs to pass the given filter.

In principle, we could also searched the itemset space the
same way as Apriori, but the proposed approach has benefits:
(1) We immediately obtain itemsets of different lengths, so that
the user can interrupt the process and still obtain itemsets of
different length. (2) By constructing the density estimates, a lot
of statistical information is already contained in the Hoeffding
trees, which is a more informed way of searching the itemset
space. (3) Other kinds of itemsets can be mined from the
statistical information, which is beyond the scope of this paper.

Algorithm 2 is only the general framework that can be
combined with many different filters. For frequent itemsets,
we need a filter that estimates the frequencies based on the
given density estimate f.... An example for such a filter
is provided by Algorithm 3. It computes the frequency as
chcefm w[fee] + fec-get DensityV alue(candidate), where
w 1s a weight vector for the classifier chains. Instead of using
the original weights, however, it reweights the chains using the
itemset and the chain ordering, because the ordering can have
an impact on how accurately it estimates certain density values.
The closer a variable is to the end of the ordering, the more
variables are considered during split decisions, which possibly



Algorithm 2: I[SON

Algorithm 3: isFrequent

Input: EDDOpcc fece. itemset filter filter

Output: the itemsets for which filter is true

iterations < 0

// iteration 0

C' 0

3 for ht € fcc and fcc € fecc do

4 P « {nodey,...,node; € ht |

nodey.isRoot() A node;.isLeaf()}

5 for path € P do

¢ < turn path into an itemset

// iterate over itemsets by size and prune
candidates using filter

7 it < subsets(c, pruning = true)

C'+ C'U{s|seit}

9 iterations.append(C’)

// iteration >0

10 while |C’| > 0 do

// generated candidates

N

1 Ceurr < C',C" + 0

12 if |iterations| = 1 then

13 | mergePartners + iterations[1]

14 else

15 | mergePartners + iterations[l : i]

16 for ¢c; € mergePartners and ca € Ceyrr do
17 if filter(merge(ci,c2)) then

18 | C' <+ C"U{merge(ci,c2)}

19 iterations.append(C")

20 return U; ;< |ierations| iterationsli]

yields less accurate results for itemsets consisting of only a
couple of variables. To take this into account, the ¢sF'requent
filter reweights the chains of f... for each itemset candidate
in dependence of the variables ordering (lines 1 — 5).

If f is an accurate representation of f, i.e., the
density values correspond to the true density values,
then ISON(f,isFrequent(f,0)), denoted as ISON o
isFrequent, is able to discover all frequent itemsets:

Theorem 2. Let f.. be the joint density of the data
stream S, and let 0 € [0;1] be the threshold for fre-
quent itemsets. If f is an accurate representation of f, then

ISON(f,isFrequent(f,0)) = Fg.

Proof: Fs C ISON oisFrequent: (proof by induction)
There is a Hoeffding tree in f.. with target variable X for
all variables X € X. Hence, we have the discrete probability
distribution of all X' € X'. This implies that (X, v) € F(S) for
all X € X and for all v € values(X), since f is an accurate
representation of f.

Now, assume that ISON o isFrequent contains all fre-
quent itemsets of length k. Further assume that itemset €
F(S) be an arbitrary frequent itemset of length k + 1 and that
itemset & ISON oisFrequent. By the induction assumption,
there is an iteration ¢ in ISON where every proper subset
of itemset has been constructed by ISON. Hence, at latest
in iteration 7 + 1, itemset will be constructed usipg one
of its possible decomposition into subsets. Since f is an
accurate representation of f, itemset € ISON oisFrequent,
which contradicts our assumptions and, therefore, implies that
Fs CISON oisFrequent.

 ISONoisFrequent C Fs: Follows immediately, because
f is an accurate representation of f. [ |

Theoretically, a single chain is sufficient. In practice,
however, one chain could easily miss important variables

Input: EDDO g fece. threshold 6 € [0; 1], itemset C
Output: true iff C' is frequent

w <+ [] // heuristic: weight chains

for fCC E fCCC dO
// determine the indices of the attributes in the
chain ordering
3 O «+— [(ngmi'iljzl,...,nL(fcc[j] = X;) | (Xi,v:) € C]
// weight f.. according to these indices

w.append(312) [0] — Ofi] + $°12) |0] — O[i] — Ofi — 1))

w < normalize(w)
return > wlec] - ce(candidate) < 0

)

RIS

ccE fece

interdependencies due the underlying ordering. By using an
ensemble of chains, the probability of missing important
attribute interdependencies is reduced, thereby increasing its
robustness and accuracy. Theorem 2 can be directly applied to

fecc~

VII. EVALUATION

In this section, we evaluate the capabilities of ISON to
discover frequent itemsets and the effects of applying the t-
closeness property to a density estimate. We compare to Apri-
ori, as an algorithm delivering the ground truth, to Moment,
as one of the few stream mining algorithms for which a
functioning implementation is available, and to POEt. ISON
has been implemented as part of MiDEO'. For Apriori we used
the implementation by Christian Borgelt> and, for Moment,
the MOA extension provided on the MOA website®. Since
the implementation of Moment is not able to deal with non-
Boolean variables and only produces closed itemsets, we added
a wrapper that flattened the data stream and computed the
frequent itemsets based on the closed frequent itemsets. As
window sizes, we considered 1-102, 1-102%, 1-10%, 4 - 10%,
according to the dataset with the fewest instances.

To generate synthetic datasets, we used the well-known
IBM dataset generator [25], where we set (1) the number of
patterns to 5000, (2) the average transaction size to 4, (3)
the average itemset lengths to 2 or 4, and (4) the number
of instances to a value between 5 - 10* and 5 - 107. The real-
world datasets are based on three publicly available datasets
(http://archive.ics.uci.edu/ml/): skin, pokerhand, and movie-
lens. To obtain more meaningful itemsets and to make some
trends more visible, we modified movielens slightly: Instead
of having the age of the users as attribute in the movielens
dataset, we introduce a binning and grouped users into the
four groups 0-25, 26-50, 51-75, 76-100. Moreover, as the
dataset has relatively few instances compared to the number
of possible combinations, we consider two variants of the
movielens dataset having fewer variables, which will help to
determine how the accuracy of the representation affects its
ability to discover frequent itemsets.

The accuracy of a repesentation is mainly determined by
two factors: the number of J-tolerant closed frequent itemsets
A and the number of instances N. For small J, A basically
characterizes the number of variable-value combinations hav-
ing differing probabilities. As each of them need to be captured

Thttps://github.com/kramerlab/mideo
2http://www.borgelt.net/pyfim.html
3http://moa.cms.waikato.ac.nz/moa-extensions/
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Fig. 3: The plots present the TPR and FPR values with respect to several datasets and support thresholds. For ibm01, ibm02,
ibm03, poker, skin, and mov01, 6; = 0.05, 3 = 0.10, 85 = 0.20, 84 = 0.30. For mov02 and mov03, ¢#; = 0.50, 62 = 0.60,
03 = 0.70, 8, = 0.80. At the top are the TPR values (red is better, i.e., larger values); at the bottom are the FPR values (blue
is better, i.e., smaller values). The numbers in the heatmap are logarithms to base 10 of the number of itemsets. Notice that we
set the window size of Moment equally large for all datasets. This is, however, beneficial for the TPR, if no drift occurs. Also
notice that POEt did not finish on the skin dataset within 24 hours, so that we set the TPR to 0 and the FPR to 100.

by the density estimate, it cannot treat them the same way
without compromising its accuracy. If |A| is large and only
few instances are available, an accurate description is difficult.
The more instances are available, the easier it gets. To describe
this dependence on A and N, we define the ratio of A and N
as combination ratio and use it as a complexity measure.

A. Itemset Discovery

To assess the performance of the algorithms, we measure
the true positive rate (TPR), i.e., ‘f’soﬁf)gff‘(”sf;i’”(s)‘, and
[U€F1508 (S 16 apriori ()}

[Fapriori (S)] :

How many itemsets are discovered by ISON is illustrated
in Figure 3. The TPR is very high on datasets with a low
combination ratio (ibm01, ibm02, ibm03, pokerhand, movO1)
and high on datasets with a higher combination ratio (mov02
and mov03). Compared to POEt, ISON is showing an overall
better TPR, but on datasets with fewer frequent itemsets (i.e.,
ibmO1, ibm02, ibm03, skin, and mov01 with # > 0.20) both
algorithms are roughly on par. Regarding the FPR, ISON
exhibits very low values on all datasets, whereas POEt exhibits
high values. This due to the few assumptions that POEt
imposes on the density estimate. POEt constantly retrains
density estimates and draws a fixed number of itemsets from
them. Many of these itemsets are not frequent, which causes
the low FPR values. These itemsets can obviously be filtered
out using the original density estimate, as in the case of ISON,
but it shows that POEt has to generate a multiple of itemsets
to achieve high TPR values. Moreover, many of the itemsets
are also duplicates, which increases the number of required
itemsets even further. This is not a problem for datasets with
a low combination ratio, but leads to a substantially increased
running time for datasets with higher ratios. Hence, POEt can
be successful in discovering extremely frequent itemsets but
struggles with itemsets having a medium to low frequency.

the false positive rate (FPR), i.e.,

ISON also exhibits a higher TPR and lower FPR than Mo-
ment on most datasets. If the window size is large enough and
0 is large, we observe that ISON and Moment are on a similar
level with respect to the TPR. These datasets have a rather
low combination ratio, so that a fraction of the instances is
already sufficient to determine the frequent itemsets precisely
— at least for sufficiently large minimum support thresholds.
Since Moment measures the frequency using a window, this
helps to achieve a good performance. If the combination ratio
is high, as in the case of the movielens dataset, the window
size needs to be large to capture the frequencies of the itemsets
properly. Surprisingly, however, increasing the window size on
movielens seems to decrease the coverage. We assume that this
is due to small distribution drifts in the data that cause Moment
to correct the frequency of itemsets that are frequent within
the window but not frequent overall. Although this leads to
a low coverage, this behavior is actually intended — because
Moment focuses on the currently frequent itemsets.

B. Number of Classifier Chains

In a separate experiment, we also analyzed how the number
of classifier chains of the density estimate afffect the discovery
of frequent itemsets. The results are summarized in Figure 4.
It shows that the TPR does not change much, whereas the
FPR can reduced substantially. When having several classifier
chains to extract itemsets, the algorithm has a higher con-
fidence on the itemsets that are represented in all classifier
chains, whereas itemsets only available in one or two classifier
chains are more or less ignored.

C. Running Time

To analyze ISON’s running time behavior, we conducted
an experiment on IBM datasets having equal properties and
between 5-10% and 5-107 instances. The experiment has been
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Fig. 4: The plot shows how much the TPR and FPR values of
ISON are affected, if more than one classifier chain is used.
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Fig. 5: This plot compares the running time of Apriori and
ISON, if the number of instances is increased.

conducted on a standalone computer with an Intel® Core™
17-4770K CPU (4 cores, 3.50 GHz, 8 MB cache) and 32 GB
RAM. As baseline, we used Apriori instead of Moment, since
Moment only produces the currently closed frequent itemsets.

The results are summarized in Figure 5. In the beginning,
when the dataset consists of fewer than 2 million instances,
Apriori extracts the frequent itemsets faster than ISON -
especially, when only few instances are available. But, for
increasing numbers of instances, ISON’s running time only
increases moderately, whereas Apriori’s increases substantially.
Considering the approach taken by ISON, this was to be
expected, because ISON first estimates the joint density of
the dataset and then extracts the itemsets from the estimate.
Hence, the itemset discovery is completely independent of the
size of the dataset and ISON only requires longer running times
for constructing the density estimate, which is in general fast.
Apriori, on the other hand, has to scan the dataset to discovery
frequent itemsets, which takes longer, the larger the dataset.

D. Privacy

In addition to Theorem 1, we also evaluated the effects
of the t-closeness property on real-world data. The plot in
Figure 6 illustrates how many and how strongly itemsets
are changed, if one allows no deviation from the global
distribution for the attributes age and occupation of the
movielens dataset. It shows that most of the density values
are modified compared to the initial density estimator and is
in line with our expectation, because the t-closeness algorithm
makes sure that more extreme distributions are brought closer
to the global distribution. This can also affect variable-value

100000 g T
00000 ISON with t-closeness  mm—

10000

1000

number of itemsets

Fig. 6: This histogram shows how the t-closeness of
6 = 0 affects the supports of itemsets. On the x-axis
is the percentaged deviation of the support, i.e., z;—1 <

f.getDensityValue(itemset) ) . ..
77 gei DensityValue(iemsel) 100 < z;, where f is the original

estimate, f' is the modified estimate. On the y-axis is the
number of itemsets matching this percentaged deviation.

TABLE II: When training an EDDO estimate on the movielens
dataset, ISON extracts itemsets that can be associated with a
single entity: a student of age 50-74. Without our t-closeness
algorithm, the preferences, the itemsets are still visible, but
the supports suggest that at least several hundreds of entities
are associated with them, making it less likely that certain
itemsets are associated with individual persons. Notice that
=" indicates that this person did not choose this genre.

before

| after

| itemset

0.00002 | 0.02406 | —film—noir

0.00002 0.02291 —mystery

0.00002 | 0.01871 —thriller

0.00002 0.01854 —film—noir, —thriller

0.00002 | 0.01843 —mystery, ~thriller

0.00002 | 0.01816 | —action

0.00001 0.01782 —action, — film—noir

0.00001 0.01695 —action, ~mystery

0.00001 0.01665 —comedy

0.00001 0.01472 —action, —thriller

0.00001 0.01333 = film—mnoir, —thriller

0.00001 0.01136 —comedy, ~thriller

0.00001 0.01132 —action, “comedy

0.00001 0.01116 —comedy, - film—noir, -mystery
0.00001 0.01112 —comedy, ~mystery, ~thriller
0.00001 0.01089 —action, mcomedy, — film—noir
0.00001 0.01028 —action, ~comedy, "mystery

combinations not containing any sensitive attributes, since their
density values is computed by marginalizing out variables from
Q, which influences the weighting of Hoeffding tree branches.
These changes are obviously intended, as information about
the age and occupation of entity groups are no longer different
from other groups and therefore protects smaller groups.

Table II illustrates how smaller groups can benefit from this
effect. In this particular example, 17 itemsets with low support
thresholds have been discovered from the movielens dataset.
Given the number of instances, one can infer that each of
these itemsets can be attributed to a single person. Because of
the given age and the additional information that each person
provided at least 20 ratings, one can also infer that all of them
belong to the same person, a student between age 50 and 74.
After applying the t-closeness algorithm, the frequency of these
itemsets have been changed, so that they appear to originate
from more than 400 persons.



VIII. CONCLUSION

In this paper, we proposed a novel itemset mining algo-
rithm, called ISON, that extracts frequent itemsets from a
probabilistic condensed representation. Compared to the cur-
rent state-of-the-art method POEt, which pursues a sampling-
based approach, ISON extracts the itemsets from the structure
of the density estimate. We provided a proof that this strategy
yields all frequent itemsets, if the representation is a perfect
description of the density of the data stream. The experimental
results showed that it discovers most of the itemsets and
that it performs substantially better than POEt and Moment
on datasets with a high combination ratio, a measure we
introduced to capture the frequency of occurrence of distinct
patterns in the data. Moreover, we discussed a strategy to
ensure well-known properties from privacy-preserving data
mining. In contrast to existing methods, we did not modify
the data itself but its probabilistic condensed representation.

In the future, we would like to explore other types of item-
sets, to extend ISON to numeric attributes, and to push or use
other frequency-related constraints such as class-correlations.
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