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Abstract—Data mining and machine learning algorithms usu-
ally operate directly on the data. However, if the data is not
available at once or consists of billions of instances, these
algorithms easily become infeasible with respect to memory and
run-time concerns. As a solution to this problem, we propose a
framework, called MiDEO (Mining Density Estimates inferred
Online), in which algorithms are designed to operate on a
condensed representation of the data. In particular, we propose
to use density estimates, which are able to represent billions
of instances in a compact form and can be updated when new
instances arrive. As an example for an algorithm that operates
on density estimates, we consider the task of mining association
rules, which we consider as a form of simple statements about
the data. The algorithm, called POEt (Pattern mining on Online
density esTimates), is evaluated on synthetic and real-world data
and is compared to state-of-the-art algorithms.

I. INTRODUCTION

Traditional data mining and machine learning algorithms
usually operate directly on the data. Whereas batch algorithms
may use all the data at every computation step, incremental and
online algorithms use only subsets of the data at each step (i.e.,
single instances, consecutive instances, or a random sample).
With increasing amounts of data and a tendency towards
streams of data (e.g., click data, sensor data, tweets, . . .), the
latter algorithms are becoming more and more important for
applications. Hence, many traditional tasks now need to be
solved in an online setting. Many of the algorithms implicitly
assume that collecting the data and performing the task on it
is either happening simultaneously or with a small temporal
delay, which is not always desired or possible: in several
scenarios (see below), separating the collection process and
performing the actual task could bring some benefits.

In this paper, we present a new approach to stream mining
that is not directly based on raw data in any form (windows,
random samples, ...), but on density estimates that were
inferred online. The main idea is to decouple the process of
density estimation, based on the data stream, and the extraction
of human-understandable data mining results (patterns, rules,
outliers, clusters, ...) from this density estimate and presenta-
tion to the analyst (see Figure 1). The approach embraces two
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important principles of data mining and knowledge discovery
in databases, namely the use of probabilistic methods to model
the data and at the same time the value of human-readable
patterns and models to gain a deeper understanding of the
data. The approach has several benefits:
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Fig. 1. The Concept of stream mining based on online density estimates
MiDEO (Mining Density Estimates inferred Online)

1) It can analyze data of much greater volume than
could ever fit into main memory. As the density
estimates can be updated continuously and the size
of the density estimates is a fraction of the size of the
data represented by the densities, potential memory
limitations do not play a major role anymore.

2) Along the same lines, the speed of the stream and
the speed of analysis need not be coupled anymore
(as indicated in Figure 1). While the online den-
sity estimator EDDO constantly updates the density
estimate f , this density can be accessed by the
analysts according to their own needs and analysis
requirements.

3) Unknown task at the time of collecting the data: If the
data mining or machine learning task is not known
at the time of collecting the data or several tasks
need to be performed, which possibly even depend
on each other, a condensed representation of the data
can be useful. As density estimates are “universal
representations” of data, they can be used to derive



any information needed, be it patterns, rules, outliers,
clusters, or the like. To make this possible, inference
tasks need to be supported for this specific type of
density estimate.

4) Privacy concerns: To protect the privacy of the enti-
ties of which the data is collected, it could be required
that algorithms must not operate on the raw data, but
some condensed representation of the data. This could
be relevant if contracts between companies prohibit or
restrict the access to raw data but allow to perform
certain evaluation tasks. Density estimates are suit-
able for this task, because they keep all the relevant
statistical properties of the data, in principle without
revealing information about individual entities.1

5) Basis for parallelization: If we had an anytime den-
sity estimator instead of an online density estimator,
the whole approach could provide a basis for paral-
lelization on many common architectures and plat-
forms. Fractions of the stream could be distributed,
results could be gathered given the available time
budget and combined (mixed) again to obtain the
overall density that is queried by the analysts.

A condensed representation of data that fulfills many of the
requirements mentioned above is the online density estimators
(EDDO) introduced by Geilke et al. [1]. It is able to represent
billions of instances in a compact way, can be updated when
new instances arrive, and is modifiable and queryable by
inference algorithms. Using pattern mining as an example,
we will demonstrate that data mining tasks can be directly
performed on top of it without access to the raw data.

The main contributions of the paper are as follows. (1)
We propose a framework, called MiDEO, using a condensed
representation of data, which is both probabilistic and works
in an online setting. It offers an universal representation of
data on which data mining and machine learning tasks can be
performed. (2) As an example, we designed algorithms that
perform itemset and association rule mining on this universal
representation. In particular, we show that an online density
estimate is suitable for this purpose.

The remainder of the paper is organized as follows. In
Section II, we briefly discuss related work in the context of
itemset and association rule mining. In Section III, we give a
short summary of the online density estimator EDDO with the
main focus on the aspects that are relevant for this paper. In
Section IV, we present algorithms that directly extract itemsets
and association rules from online density estimates produced
by EDDO. Subsequently, in Section V, the algorithms are
compared to state-of-the-art algorithms on synthetic and real-
world data. Section VI concludes the paper.

II. RELATED WORK

Itemset mining has been introduced by Agrawal et al.
[2]. Since then, besides methods to speed up the mining
process (e.g., [3], [4]), many other aspects of pattern mining
have been studied. For example, uncertainty of itemsets [5],
privacy concerns [6], or computing condensed representations
of patterns [7], [8]. For the latter, a sufficient subset of

1Of course, a privacy-preserving data mining approach based on this still
needs to be worked out in detail.

all frequent itemsets was often used, from which the other
frequent itemsets could be derived. However, these condensed
representations were only suitable for the task of mining item-
sets or association rules – tasks from other areas of data mining
or machine learning were mostly not addressed, although the
idea of condensed representations of patterns was originally
conceived to be more general than “just” for pattern mining.
To the best of our knowledge, no condensed representation
of data, in particular not one that is (a) probabilistic and (b)
works in an online setting, has been proposed so far.

III. ONLINE DENSITY ESTIMATES

In this paper, we will use the online density estimator
introduced by Geilke et al. [1], called EDDO, to estimate
the discrete joint density of the data in an online fashion.
EDDO exploits that every discrete density f(X1, . . . , Xc) with
variables X1, . . . , Xc can be represented as a product

f(X1, . . . , Xc) = f1(X1) ·
c∏
i=2

fi(Xi | X1, . . . , Xi−1) .

EDDO estimates each of the factors by classifiers that pro-
vide class probability estimates, thereby yielding a chain of
classifiers. For f1(X1), it employs a Majority Class classifier,
and, for fi(Xi | X1, . . . , Xi−1), i ∈ {2, . . . , c}, it employs
Hoeffding trees [9]. The Hoeffding trees model the interde-
pendencies between the variables by selecting variables as
tree node based on previous choices above that node. Hence,
interdependencies are implicitly covered by the structure of
the tree. If an instance needs to be drawn from the density
estimate, EDDO simply iterates over the classifiers from
f1(X1) to fc(Xc | X1, . . . , Xc−1), draws an estimate from
each classifier, samples a value based on the distribution
obtained, and uses the output as input for the next classifier.
In a similar fashion, the probability of a given instance is
computed. To increase the robustness of the density estimate,
the authors introduced two further variants: EDDOECC and
EDDOEWCC . EDDOECC uses an ensemble of classifier
chains instead of a single classifier chain and averages the
estimate over all chains. EDDOEWCC also uses an ensemble
of classifier chains but additionally weights the classifier chains
according to their performance.

These density estimates actually provide a condensed rep-
resentation that can process thousands of instances per second
and enable a number of inference tasks. The possibility to
perform inference tasks is probably one of the most important
properties, since they are a key component to extracting
information from the condensed representation, thereby al-
lowing to perform data mining and machine learning tasks
on top of it. In particular, they support the modification of
the condensed representation by extracting specific parts of
the density and incorporating evidence. Both are important to
adapt the representation to the requirements of the task at hand
and to perform tasks long after the corresponding data has been
collected.

IV. PATTERN MINING

In the following, we describe how data mining and machine
learning tasks can be directly performed on an estimate of
a discrete joint density. As example, we use itemset and



association rule mining and employ the online density esti-
mates produced by EDDO. Although the presented approach
is simple, it demonstrates that online density estimates can be
used for data mining and machine learning tasks.

In traditional association rule mining, an association rule is
an implication of the form A⇒ B with A and B being non-
empty subsets of a given set of items I := {i1, i2 . . . , im} and
A∩B = ∅. It is obtained from a sequence of transactions D :=
{t1, t2, . . . , tn}, where each transactions is a non-empty subset
of I . Transactions are often represented by a Boolean vector of
size m, where true means that the item corresponding to that
index is contained in the transaction and false means that it is
not contained. In order to mine relevant rules, the algorithms
require a measure of interestingness, i.e., a minimum support
threshold θ and a threshold γ for the confidence of a rule.
Then an association rule (l ⇒ r) is considered interesting
if its support (supp(l ⇒ r)) exceeds θ and its confidence
(conf(l ⇒ r)) exceeds γ. An alternative to the confidence is
the lift, for which the user has to define a threshold δ. Again
rules exceeding γ are considered interesting. [2], [10]

In order to directly perform association rule mining on
a density estimate of the data, we deviate slightly from the
original idea of itemsets. Instead of mining rules where the
left- and right-hand side contain items, we mine rules where
specific variable-value combinations are on both sides (e.g.,
(X4, v3), (X9, v1) ⇒ (X1, v5), where (Xi, vj) means that
attribute Xi takes the value vj). In this setting, the sequence of
transactions are the instances from which the density estimate
has been computed.

To evaluate the interestingness of a rule, we will compute
the measure of interestingness (e.g., confidence or lift) by
deriving the required probabilities from a density estimate f .
For the confidence, we compute f(r | l) and for the lift we
compute f(r|l)

f(r) . In contrast to conventional association rule
mining, we will not use some threshold to select association
rules. Instead, we require the number of desired candidates
from the user, sample ten times as many candidates, and select
the top 10% with respect to the measure of interestingness.

A. The Algorithms

In this subsection, we propose POEt, an algorithm that
performs association rule mining on an online density estimate
of the data. As in the case of the Apriori algorithm [10], it
first selects possible candidates by generating attribute-value
combinations that exceed the probability threshold θ1. This
threshold is not given by the user but is estimated from a
sample of instance. Afterwards, it uses these candidates to
derive association rules based on the confidence or lift. In
order to perform these subtasks, it makes extensive use of
inference algorithms as presented by Geilke et al. [1]. Similarly
to their algorithms, our main focus does not lie on the run-
time performance of the algorithm but on the association rules
extracted from the online density estimate.

To find an appropriate probability threshold for selecting
candidates and to estimate the number of instances to perform
certain inference tasks, POEt uses the lower and upper Cher-
noff bounds [11]. In particular, they provide estimates that hold
with a given confidence threshold.

Formally, we have the following setting: There is a stream
of instances with variables X := {X1, X2, . . . , Xc}. Each
variable Xi, 1 ≤ i ≤ c, may take a predefined set of
discrete values values(Xi). A variable-value combination is
a set of tuples (Xi, v) with v ∈ values(Xi) and Xi ∈ X .
The density estimate that has been derived from the stream
is denoted by f(X1, X2, . . . , Xc). Moreover, POEt requires
several parameters that can be set by the user. θ2 is the
confidence level of the lower or upper Chernoff bound, which
will be used to estimate the size of samples. λ is another
parameter that is required for computing Chernoff bounds. It
specifies the deviation from the mean.

Algorithm 1: candidateGeneratingDensity
Input: density estimate f , set of all variables X , set of

variables to be marginalized out Y ⊂ X ,
precision of Chernoff bound 0 < θ2 < 1,
λ > 0 parameter for Chernoff bound

Output: density estimate f ′
Require: min. number of training instances m (e.g. 105)

// Est. required training instances
1 θ1 ← estimateProbabilityThreshold(f,X, Y, θ2)
2 find the minimal n using a binary search starting at
n = 1 with n ∈ N, s.t.

θ2 < Pr[T > (1 + λ) · µ] <
[

eλ

(1 + λ)(1+λ)

]µ
,

where µ = n · θ1 and T is the sum of independent
Poisson trials with probabilities Pr(Ti = 0) = 1− θ1,
Pr(Ti = 1) = θ1.
// Train estimator

3 f ′ ← initialize a new density estimator
4 while f ′.numProcessedInsts() ≤ max(m,n) do
5 inst← draw instance from f
6 if marginalizedProb(f,X, Y, inst) ≥ θ1 then
7 update f ′ using inst
8 end
9 end

The first subtask is to select variable-value combinations
that exceed a given minimum support threshold θ1 with high
probability. Algorithm 1 derives a density estimate f ′ from
which these candidates can be drawn. As input, it requires
the original density estimate f , the set of all variables X , a
set of variables Y , and the Chernoff parameters θ2 and λ.
Y contains all those variables that should be ignored when
deriving the density estimate. Later on, this will be used to
select subsets of variables for which candidates should be
generated. Additionally, it requires a global parameter m,
which is the minimum number of instances that should be
used to train f ′. Its purpose is explained later. In the first two
lines, the algorithm estimates the number of instances n that
are required to obtain a density estimate that contains instances
having a probability of θ1 or higher. Using the upper Chernoff
bound, an n is computed that holds with confidence level θ2,
which means that a sample of size n contains instances having
a probability of θ1 or higher with a confidence level of θ2. In
lines 3 through 9, a density estimator f ′ is trained with up
to max(m,n) instances. The instances are drawn from the
original density estimator f and are only passed on to f ′ if



Algorithm 2: estimateProbabilityThreshold
Input: density estimate f , set of all variables X , set of

variables to be marginalized out Y ⊂ X ,
precision of Chernoff bound 0 < θ2 < 1

Output: probability threshold θ1
Require: sampleSize (typically 104), topX size of

subset for computation of probability
threshold and confidence (typically 10%)

// Estimate the lowest probability of
the top topX% of the instances

1 probs← ∅
2 for i = 1 to sampleSize do
3 inst← draw instance from f
4 probs← probs ∪marginalizedProb(f,X, Y, inst)
5 end
// Estimate θp (the minimum probability

threshold for the instances)
6 θp ← lowest probability of top topX% in probs
7 find the minimal 0 < λT ≤ 1 using a binary search, s.t.

Pr[T < (1− λT ) · µ] < e−
µλ2T

2 < θ2 ,

where µ = sampleSize · θp and T is the sum of
independent Poisson trials with probabilities
Pr(Ti = 0) = 1− θp, Pr(Ti = 1) = θp.

8 θ1 ← θp · (1− λT )

the marginalized probability of the instance equals or exceeds
θ1. At this point, the purpose of m becomes obvious. If n
is very small, but the user knows that the density estimator
typically requires a larger number of instances to provide good
estimates, then m ensures that at least that many instances are
used for training.

Algorithm 3: marginalizedProb
Input: density estimate f , set of all variables X , set of

variables to be marginalized out Y ⊂ Y ,
instance inst

Output: marginalized probability p

1 p← 1
2 inst← remove all variables from inst that are in Y
3 for every tree in f where the class attribute 6∈ Y do
4 paths← the set of all paths with

(a1, v1, a2, v2, . . . , aj−1, vj−1, aj) in T , where
a1 = root(T ), aj ∈ leaves(T ), ai are the nodes, vi
are the edge labels, and ai being an attribute in inst
with value vi, 1 ≤ i ≤ j

5 pT ← 0
6 for path ∈ paths do
7 pT ← pT + probability of path in f
8 end
9 p← p · pT

10 end

The procedure candidateGeneratingDensity
(Algorithm 1) makes use of two subprocedures:
estimateProbabilityThreshold (Algorithm 2) and
marginalizedProb (Algorithm 3). Algorithm 2 estimates a

Algorithm 4: performPatternMining
Input: density estimate f , set of all variables X , θ2, λ

parameter for Chernoff bound, maximal number
of candidates per subset m, maximal number of
candidates n

Output: set of association rules R
Require: topX size of subset for computation of

probability threshold and confidence

1 C′ ← ∅, m′ ← topX ·m, n′ ← topX · n
2 C ← probableItemsets(f,X, θ2, λ,m

′, n′)
// Select association rules and

compute their confidence
3 for c ∈ C do
4 for 1 ≤ i ≤ n do
5 r ← {(Xi, value of Xi in c)}
6 l← {(Xj , value of Xj in c) | Xj 6= Xi}

conf ← probConfidence(f,X, l⇒ C l, θ2, λ)
7 C ′ ← C ′ ∪ (l⇒ r, conf)
8 end
9 end
// Select top topX% association rules

with respect to the confidence
10 R ← ∅
11 b← smallest confidence value of top topX% of C ′
12 for (l⇒ r, conf) ∈ C ′ do
13 if conf >= b then
14 R ← R∪ (l⇒ r)
15 end
16 end

probability threshold for the instances, which corresponds to
the minimum support threshold in a typical pattern mining
setting. Dependent on the dimensionality of the dataset and
the variance of the probabilities, the probabilities can be
very small or very large. Therefore, the procedure estimates
a probability threshold using a sample of instances. As
input parameters, Algorithm 2 has the same parameters as
Algorithm 1 except for the Chernoff λ. Additionally, there
are two global parameters: sampleSize is the size of the
sample to determine typical probability values, and topX is
the size of the subset that will be used by the algorithm to
determine a high probability value. In lines 1 − 5, Algorithm
2 draws sampleSize many instances from f , computes their
marginalized probability (variables from Y are marginalized
out), and stores the probabilities in probs. Afterwards,
an initial probability threshold is chosen based on probs.
Using the lower Chernoff bound, this threshold is corrected
by computing the maximal deviation with respect to the
confidence level (line 7 and 8).

Algorithm 3 computes the marginalized probability of
instances. It expects the original density estimate f , which is a
classifier chain consisting of Hoeffding trees, the set of all vari-
ables X , and a set of variables Y , which contains the variables
that have to be marginalized out. If Y = ∅, the probability of
an instance is obtained by multiplying the probabilities of this
instance for each Hoeffding tree (line 9). The probability of
a Hoeffding tree T is simply the class probability stored in
aj , where aj ∈ leaves(T ), (a1, v1, a2, v2, . . . , aj−1, vj−1, aj)
is a path in T , a1 = root(T ), ai are the nodes (attributes



Algorithm 5: probableItemsets
Input: density estimate f , set of all variables X ,

precision of Chernoff bound 0 < θ2 < 1, λ > 0,
maximal number of candidates per subset m,
maximal number of candidates n

Output: set of candidates C

// Choose attribute subsets
1 Y ← ∅
2 for i = 0 to b nmc do
3 Y ← Y ∪ Y , where Y ⊆ X , |Y | is chosen

according to a geometric distribution with
P (l) = 0.5 · (1− 0.5)l−2 for l = 2, 3, . . . and the
elements are chosen uniformly at random

4 end
// Create a density estimator for each

attribute subset and draw instances
5 C ′ ← ∅
6 for Y ⊆ Y do
7 f ′ ← candidateGeneratingDensity(f , X , Y , θ2, λ)
8 for i = 1 to m do
9 inst← draw instance from f ′

10 add inst to C ′
11 end
12 end
13 C ⊆ C ′ uniformly at random, such that |C| = n

ai with value vi), and vi are the edge labels (values vi),
1 ≤ i ≤ j. If Y 6= ∅, there are several such paths (line 4) and
the probabilities of each path have to be summed up (lines 6
through 8). The variables in Y are ignored by removing them
from the instance inst (line 2).

Now that we can generate density estimates from which
instances with high probability can be drawn, we can describe
the main procedure performPatternMining (Algorithm 4).
Besides the parameters f , X , θ2, and λ, the algorithm has
two additional parameters: n is the total number of can-
didates that are requested by the user, and m is maximal
number of instances per subset. In the beginning (lines 1− 4),
performPatternMining invokes probablyItemsets with
topX as many instances as required by the user (i.e., m′ =
topX ·m, n′ = topX ·n) and stores the result in C. Multiplying
by topX is necessary, since we will select only those rules that
belong to the top topX% with respect to the confidence or lift.
It is basically the same idea we applied earlier. The user cannot
know typical values for the confidence or lift without using the
algorithm. Therefore, Algorithm 4 selects the association rules
relative to the set of candidates (lines 10 through 16). After all,
in our pattern mining setting, it is not important which exact
confidence or lift values an association rule has, but that it is
interesting relative to all the patterns we can find. Using the
set of itemsets, Algorithm 4 constructs association rules and
computes their confidences. For each itemset, it iterates over
the set of attributes. The currently selected attribute is used for
the right hand side and the remaining attributes are assigned
to the left hand side. From all association rules generated this
way, the algorithm picks the top topX% and returns them to
the user.

The procedure performPatternMining (Algorithm 4)

Algorithm 6: probConfidence
Input: density estimate f , set of all variables X , l⇒ r,

θ2, λ
Output: confidence of l⇒ r

1 Y ← vars(l), Z ← vars(r)
2 f ′ ← deriveConditionalDensity(f,X, Y, Z, θ2, λ)
3 return f ′(r)

makes use of two subprocedures: probableItemsets (Al-
gorithm 5) and probConfidence (Algorithm 6). The input
parameters of Algorithm 5 are the same as used before, so
we directly start with the explanation. In lines 1 through
4, subsets of X are chosen randomly. Their size is chosen
according to a geometric distribution, so that smaller itemsets
are preferred over bigger ones. The elements are chosen
uniformly at random. As a consequence, the choice of the
subsets is biased, but, in our opinion, this is closer to what
we have to expect from real-world applications [12]. In the
second part of the algorithm (lines 5 through 12), for each
subset of variables Y , a density estimate f ′ is derived where
the variables in Y are marginalized out. Then up to m instances
are drawn from f ′ and stored into C ′. Since we have selected
b nmc+1 subsets in the beginning, |C ′| could be larger than n.
Therefore, we choose n many itemsets uniformly at random
from C ′.

Algorithm 6 was already described in the beginning of
the section (and the lift can be computed similarly). The sub-
procedure deriveConditionalDensity (Algorithm 7), which
is invoked by probConfidence, computes a density estimate
that is conditioned on some variables Z ⊂ X and is trained
with instances exceeding the probability threshold as computed
in Algorithm 1. Again most of the input parameters are the
same as before. The set {(Z1, v1), (Z2, v2), . . . , (Zk, vk)} with
Zj ∈ X for 1 ≤ j ≤ k, are the variables and their values on
which the resulting density will be conditioned. In the context
of the inference algorithms, these tuples are the hard evidence
that needs to be considered by the density estimator. Lines
1 and 2 are identical to Algorithm 1. In lines 4 through 8,
the algorithm iterates over all Hoeffding trees and fixes the
values of the variables Z1, Z2, . . . , Zk. By fixing the values of
the corresponding nodes in the Hoeffding tree, we implicitly
condition the density represented by the tree on the variables
Z1, Z2, . . . , Zk. Lines 9 through 14 are identical to the second
part of Algorithm 1 again.

This concludes the description of POEt. Notice that the
presented procedures work in an offline fashion. A recom-
putation of the rules is only necessary if either the estimate
is significantly more precise or a concept drift occurred. For
the latter, concept drift detection algorithms can be used (e.g.,
Dries and Rückert [13]). For the former, one could apply
the Wilcoxon rank-sum test to log-likelihoods of a sample of
instances to decide whether there is a significant difference in
the probabilities predicted by the density estimate and an older
snapshot.

V. EVALUATION

In this section, we compare POEt to Apriori [10], which
will provide the ground truth, and Moment [14], which is like



Algorithm 7: deriveConditionalDensity
Input: density estimate f , set of all variables X , set of

variables to be marginalized out Y ⊂ X ,
{(Z1, v1), (Z2, v2), . . . , (Zk, vk)} with Zj ∈ X
for 1 ≤ j ≤ k, precision of Chernoff bound
0 < θ2 < 1, λ > 0

Output: density estimate f ′
Require: min. no. of training instances m (e.g., 105)

// Est. required training instances
1 θ1 ← estimateProbabilityThreshold(f,X, Y, θ2)
2 find the minimal n using a binary search starting at
n = 1 with n ∈ N, s.t.

θ2 < Pr[T > (1 + λ) · µ] <
[

eλ

(1 + λ)(1+λ)

]µ
,

where µ = n · θ1 and T is the sum of independent
Poisson trials with probabilities Pr(Ti = 0) = 1− θ1,
Pr(Ti = 1) = θ1.
// Train conditional density estimator

3 f ′ ← initialize a new density estimator
4 for every Hoeffding tree in f do
5 for 1 ≤ j ≤ k do
6 fix value of node Zj using vj
7 end
8 end
9 while f ′.numProcessedInsts() ≤ max(m,n) do

10 inst← draw instance from f
11 if marginalizedProb(f,X, Y, inst) ≥ θ1 then
12 update f ′ using inst
13 end
14 end

POEt intended for stream mining. Although there are many
other algorithms that compute exact itemsets and association
rules (e.g., variations of Apriori [3], [4], FPGrowth [15],
Eclat [16], . . . ), including more algorithms into the evaluation
does not provide any benefits, as the qualitative results are
identical. Indeed, Apriori alone would be sufficient to show the
effectiveness of the proposed algorithms, since we only aim
for a qualitative comparison (i.e., the memory consumption
or the run-time is not relevant) and Apriori finds all itemsets
and association rules with the desired properties. The reason
why we decided to compare to Moment as the only streaming
approach is that its implementation (MOA framework [17])
is one of the few available and functioning implementations
that computes exact itemsets. Moreover, Moment was one of
the first algorithms that performed frequent itemset mining on
streams and has already been compared to other approaches
(though not with respect to the quality). The Apriori algorithm
is available in the SPMF2 library, and we implemented POEt
in the MOA framework (version 2013.08).

For the comparison, we used synthetic and real-world data.
As synthetic data, we used data that was generated by the
IBM dataset generator [10] (the ARtool3 to be specific)
and data that was generated from Bayesian networks. For
the IBM dataset generator, we selected several parameter

2http://www.philippe-fournier-viger.com/spmf/
3http://www.cs.umb.edu/∼laur/ARtool/

TABLE I. THE TABLE SHOWS THE PERCENTAGED NUMBER OF
ITEMSETS THAT WERE FOUND BY POET IN COMPARISON WITH APRIORI

AND MOMENT. THE MINIMUM SUPPORT THRESHOLD WAS SET TO 5%,
10%, AND 25%. THE WINDOW SIZE OF MOMENT WAS SET TO 10, 000.

IBM, Bayes, AND MovieLens ARE THE DATASETS FROM THE IBM DATASET
GENERATOR, BAYESIAN NETWORKS, AND MOVIELENS, RESPECTIVELY.

Dataset Algorithm Support
5% 10% 25%

IBM Apriori 0.002 0.002 0.006
Moment 0.001 0.000 0.001

Bayes Apriori 0.384 0.487 0.524
Moment 0.101 0.195 0.415

MovieLens Apriori 0.133 0.111 0.333
Moment 0.143 0.111 0.143
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Fig. 2. For one particular dataset generated from a Bayesian network, the
figure shows the overlap of itemsets generated by POEt compared to the
itemsets generated by Apriori. For the given dataset, POEt generated 100, 000
itemsets in 284 seconds. Apriori produced 525 itemsets. The x-axis represents
the number of generated itemsets, and the y-axis represents the overlap.

settings: The number of patterns was set to one of the
values {50, 100, 1000}, the transaction length to {5, 10, 15},
and the average pattern length to {2, 4, 6}. We generated
100, 000 instance with 100 attributes. For the Bayesian net-
works, we randomly generated Bayesian networks using the
random.graph method of the bnlearn package [18] of the
R framework. Its parameter method was set to melancon,
which uses a Markov chain to draw acyclic, directed graphs
uniformly at random [19]. We generated 100 Bayesian net-
works with 10 nodes, where each node had between 4 and
8 values. As real-world dataset, we selected the MovieLens
dataset4, which consists of 23 attributes and 49, 282 instances.
Please notice that we had to flatten the MovieLens dataset and
the data generated from the Bayesian networks for Apriori and
Moment to make them suitable for the algorithms. Hence, the
resulting itemsets are no proper itemsets in the original sense,
but consist of exclusive attribute-value pairs for each attribute,
i.e, (a1, True), (a2, False), . . . . As performance measure, we
computed the percentaged overlap, which is |I1∩I2||I2| , where I1
are the itemsets produced by POEt and I2 are the itemsets
produced by the method to which we compare.

The results are summarized in Table I. For the data
generated by the IBM dataset generator, the overlap between
POEt and Apriori or Moment is relatively small (on average it
sometimes gets below 0.001). When we inspected the resulting
patterns closer, we noticed two things. First, there are datasets
where Apriori and Moment find more than 10, 000 itemsets
(sometimes even 100, 000 itemsets). Since POEt generated

4http://grouplens.org/datasets/movielens/



TABLE II. THE TABLE SHOWS THE PERCENTAGED NUMBER OF RULES
THAT WERE FOUND BY POET IN COMPARISON WITH APRIORI. THE

MINIMUM SUPPORT WAS SET TO 5% AND THE MINIMUM CONFIDENCE
THRESHOLD WAS SET TO 0% (ALL RULES), 25%, AND 50%. IBM, Bayes,

AND MovieLens ARE THE DATASETS FROM THE IBM DATASET GENERATOR,
BAYESIAN NETWORKS, AND MOVIELENS, RESPECTIVELY.

Dataset Confidence
0% 25% 50%

IBM 0.000 0.000 0.000
Bayes 0.389 0.345 0.210
MovieLens 0.098 0.093 0.100

only up to 1, 000 in the experiments, it is impossible to reach
large overlap values. Second, POEt also produces different
kinds of itemsets. Contrary to Apriori and Moment, it not only
finds itemsets that describe which items are usually present
at the same time, but also which items are not present. For
example, whereas Apriori could only provide an itemset repre-
senting customers who often watch action and crime movies,
POEt could also produce an itemset representing customers
who watch action and crime movies but almost never watch
comedy – so POEt gives you the additional information that
the customer is not interested in comedy movies. On the data
generated from Bayesian networks, the results differ from the
first experiment. With up to 52 (42%), POEt is able to find
many of the itemsets proposed by Apriori (Moment). The
same can be observed for the real-world dataset (MovieLens),
though the overlap is slightly lower than on the data generated
from Bayesian networks. When comparing the probabilities
computed by POEt with the confidence values of Apriori and
Moment, we noticed that itemsets that have a high probability
are not necessarily the itemsets that have a high support
count. Hence, there is a certain overlap, but POEt also finds
itemsets not presented by Apriori and Moment – something,
which we have also seen on the IBM data. To gain further
insights into the results, we considered individual datasets and
computed the overlap of itemsets generated by POEt compared
to the itemsets generated by Apriori with increasing number
of sampled instances. One particular example is illustrated
in Figure 2. The corresponding dataset has been generated
from a Bayesian network and yielded 525 itemsets when
running Apriori with a minimum support threshold of 5%. We
generated up to 100, 000 instances with POEt (in about 284
seconds) and computed the overlap with the itemsets generated
by Apriori every 10, 000 instances. We can see that the overlap
increases with increasing numbers of generated itemsets and
is getting close to 100% when approaching 100, 000 itemsets.

The results for the association rules are summarized in
Table II. Notice that we did not include Moment here, be-
cause MOA-Moment only generates itemsets. On the data
from the IBM dataset generator, there is basically no overlap
with Apriori, which had to be expected, since the rules are
generated from the itemsets and there was basically no overlap
on itemsets already. The results on the data from Bayesian
networks and the MovieLens dataset are comparable to the
itemsets. On the Bayesian network data, the overlap decreases
with increasing confidence. On the MovieLens dataset, the
overlap is more or less stable.

Overall, the experiments demonstrate that although POEt
has not yet been optimized in any way, it is able to find a
substantial amount of the itemsets and association rules found

by either Apriori as well as Moment (in most cases between
9% and 53%). Since the precision of POEt depends on the
quality of the initial density estimate and temporarily computed
density estimates, improvements in this area should positively
influence the overall precision of POEt.

VI. CONCLUSIONS

Using pattern mining as example, we presented algorithms
that performed itemset mining and association rule mining on
a condensed representation of data, i.e., an online density es-
timate. In the experiments, we demonstrated that the proposed
algorithms produce itemsets similar to the ones generated by
traditional pattern mining algorithms as well as itemsets that
are completely different and cannot be expressed by them. For
this task, the algorithms used a representation of the data that is
independent from the task at hand – a condensed representation
of the data. With increasing amounts of data and an increasing
emphasis on aspects like real-time analysis, privacy, and the
like, it will become more important to perform data mining
on condensed representations of the data without access to the
raw data.

The presented algorithms and experimental results showed
the feasibility of such a condensed representation of data for a
standard data mining task. In the future, we plan to investigate
fast inference algorithms to further speed up the process and
other novel algorithms to extract standard types of patterns and
models from online density estimates.
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