
Modeling Recurrent Distributions in Streams using
Possible Worlds

Michael Geilke, Andreas Karwath, and Stefan Kramer

Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
Email: {geilke,karwath,kramer}@informatik.uni-mainz.de

Abstract—Discovering changes in the data distribution of
streams and discovering recurrent data distributions are chal-
lenging problems in data mining and machine learning. Both have
received a lot of attention in the context of classification. With the
ever increasing growth of data, however, there is a high demand
of compact and universal representations of data streams that
enable the user to analyze current as well as historic data without
having access to the raw data. To make a first step towards this
direction, we propose a condensed representation that captures
the various – possibly recurrent – data distributions of the stream
by extending the notion of possible worlds. The representation
enables queries concerning the whole stream and can, hence,
serve as a tool for supporting decision-making processes or serve
as a basis for implementing data mining and machine learning
algorithms on top of it. We evaluate this condensed representation
on synthetic and real-world data.

I. INTRODUCTION

With increasing amounts of data arriving in the form of
streams, there is a high demand for tools that analyze this
data and extract relevant information from it. At the time of
collecting the data, however, it is often not known what kind of
analysis needs to be performed or there are several – possibly
even dependent – analysis tasks. Whenever storing the raw data
is either not feasible due to the sheer volume or impossible due
to privacy concerns, conventional data mining and machine
learning algorithms cannot be employed on the raw data. One
possible solution to overcome these problems has recently been
introduced by Geilke et al. [1]. They showed that an online
density estimate can be used as condensed representation of
the data, on which data mining and machine learning tasks
can be performed. However, this condensed representation only
represents the current distribution of the data. If the underlying
distribution changes, the previous condensed representation
adapts to capture the new distribution. This leads to a loss
of information, since it is no longer available to the data
mining and machine learning algorithms and, therefore, poses
a problem for the historical analysis of the data.

A real-world example where recurrent data distributions
are likely to occur is the database of a big online store. For
each product category (e.g., books, laptops, clothes), we have

c© 2015 IEEE This is a preprint of the paper: Michael Geilke, Andreas
Karwath, and Stefan Kramer. Modeling Recurrent Distributions in Streams
using Possible Worlds. In: Proceedings of the International Conference on
Data Science and Advanced Analytics 2015 (DSAA 2015), IEEE 2015.
http://dx.doi.org/10.1109/DSAA.2015.7344814

p1 p2

p3

p4

Fig. 1. At the top, a data stream is illustrated that is divided into a sequence
of segments S1, . . . , Sk . Colored segments represent a data distribution and
segments that are dark gray represent data distribution drifts. At the bottom is
the resulting condensed representation of the data stream with online density
estimates for the macro-worlds (colored rectangles), recurrent micro-worlds
(white shapes), and transition probabilities (arrows).

a stream of incoming transactions, which are the products
the customers are buying. The products in a category have
a common set of variables, so that each product can be
represented as a vector of variables. Then, for each product
category, the distribution of the variables changes due to
technical advances (e.g., higher CPU clock speeds, larger
displays) or trends (e.g., glossy displays, size of shirts, skate-
boards). Moreover, previously seen distributions can reoccur
due to items becoming fashionable again (e.g., lower CPU
clock speeds because of tablets, winter clothes vs. summer
clothes). We will call these changes in the distribution of the
variables data distribution drifts and the stationary distribution
between consecutive drifts macro-worlds. Hence, each stream
can be divided into a sequence of segments S1, . . . , Sk (see
Figure 1 for an illustration): segments corresponding to macro-
worlds (colored segments) and segments corresponding to data
distribution drifts (segments that are dark gray). In this setting,
a macro-world is considered recurrent if there are i, j ∈ [1; k],
such that i 6= j and Si has the same data distribution as Sj .

In this paper, we address the new problem of representing
streams with recurrent macro-worlds. This representation al-
lows the user to query the stream to obtain statements holding
for all macro-worlds, some macro-worlds, or no macro-world.
In the example given above, this could be useful to make busi-
ness decisions that are good in most scenarios. We approach
this problem in several steps (see Figure 2 for an illustration):
First, we identify the macro-worlds and represent them using
online density estimates (see Figure 2a). If a macro-world
reoccurs, the corresponding estimate is reused. In cases where

a novel macro-world is identified, a new density estimate is
initialized. In order to obtain the best possible estimate and to
reuse as much as possible of an existing estimate, we also
identify independent parts of the macro-worlds, which we
call micro-worlds. For the relationships between the worlds,
we construct a graph representing the transition probabilities
between the macro-worlds (see Figure 2b) and the recurrence
probabilities of the micro-worlds (see Figure 2c). Hence, the
resulting condensed representation models the densities of the
macro- and micro-worlds, their transition probabilities, as well
as the recurrence probabilities of micro-worlds.

The main contributions are as follows:

1) A condensed representation of data that may contain
several, possibly recurrent macro-worlds.

2) The introduction of micro-worlds additionally to the
notion of possible worlds, where a micro-world is
part of a world that is treated independently from the
rest and can, therefore, be reused in other worlds.

3) The introduction of modules to recently proposed
online density estimates [2]. From a probabilistic
point of view, these modules are parts of the density
that are independent from the remaining density and
will be used as an estimate for micro-worlds.

4) An evaluation on synthetic and real-world data of
modules as estimates and the detection of recurrent
macro- and micro-worlds.

The remainder of the paper is structured as follows: In
Section II, we discuss related work. Subsequently, in Section
III, we introduce possible worlds and extend them for the
purpose of representing data streams with recurrent macro-
and micro-worlds. In Section IV and V, we present several
algorithms that provide a condensed representation of the data
and evaluate them in Section VI. We conclude the paper with
an outlook on future work and some final remarks (Sections
VII and VIII).

II. RELATED WORK

Although there is no work targeting condensed represen-
tations that are based on stationary data distributions in the
stream (in our case, these are the macro-worlds), concept drifts
and recurrent concepts already received some attention in the
community – to our knowledge exclusively in the context
of classification. For example, Gama et al. [3] exploited the
relationship between the underlying data distribution of the
stream and the error rate of the learning algorithm to detect
concept drifts. A similar approach was pursued by Harel et
al. [4], who resampled from the current data instances to
obtain statements via the errors of the underlying algorithms.
Another example is the work by Bach and Maloof [5], who
performed concept-drift detection based on the distribution of
the classifiers’ predictions. They employed Bayesian model
comparisons, but considered the conditional probability of the
prediction given the feature vector instead of the corresponding
joint distribution. A rather different direction was taken by
Demšar et al. [6]. They used the explanation methodology
to obtain a stream of explanations, on which they then ran
a Page-Hinkley test to detect concept drifts. A more general
approach was pursued by Kifer et al. [7], who made an attempt
at formalizing the detection and quantification of change.

They proposed a general framework to capture changes in the
distribution of the stream and evaluated several test statistics
with respect to their performance. Dries and Rückert [8] also
based the detection of concept drifts on the distribution of the
underlying stream and proposed several tests such as the CNF
density estimation test.

Recently, there was also a substantial increase of work
in the direction of recurrent concepts (not distributions). For
example, Gama and Kosina [9] proposed a framework for
handling recurrent concepts in a data stream. In order to decide
whether to reuse previous models, they train meta-learners.
Meta-learners were also used by Gomes et al. [10] to select
models based on context information for an ensemble classifier.
Other approaches were pursued by Sripirakas and Pears [11],
who used the discrete Fourier transform to store previously
seen concepts in a compact way and to match the concepts
without the need for user-defined thresholds, by Lazarescu
[12], who presented a multi-resolution learning approach to
track concept drift and recurrent concepts, or by Gonçalves
Jr and Maior de Barros [13], who detect recurrent concepts
based on the distribution of the data by employing statistical
tests. As in this paper, the latter approach also incorporates an
existing concept-drift detection algorithm into their framework.
However, their work targets the classification setting and
focuses on reusing classifiers for recurrent concepts.

For the recurrent concepts, most approaches employ some
kind of model repository to store previously seen models.
Whenever a concept drift is detected, the model repository
is checked for a model fitting the emerging concept. If yes,
the model is reused, otherwise a new model is initialized. In
contrast to this, the approach presented in this paper constructs
a graph consisting of macro-worlds and their independent
subcomponents, which are the micro-worlds. Whereas the
notion of a macro-world is in certain aspects related to the one
of a concept (e.g., both capture something stationary of a data
stream), micro-worlds have, to the best of our knowledge, no
equivalent in current research on concept-drifting data streams.

Besides concept drifts and recurrent concepts, there are also
several more specific topics that were studied. For example, the
detection of novel and recurrent classes (Masud et al. [14]),
one-class classifiers in data streams (Krawczyk and Woźniak
[15] and Liu et al. [16]), or mining conept-drifting data streams
with skewed distributions (Gao et al. [17]). However, none of
these special topics are covered in this paper.

Universal condensed representations have only been con-
sidered for data stream mining with an underlying stationary
data distribution [1]. Otherwise, condensed representations
were usually restricted to specific tasks. For example, in pattern
mining, a sufficient subset of all frequent itemsets is considered
a condensed representation of them if all frequent itemsets can
be derived from them [18], [19].

To the best of our knowledge, possible worlds have not
been used to model recurrent macro-worlds, yet. However, they
have been used in other contexts in machine learning such as
handling uncertain data [20], [21], mining patterns [22], [23],
or in the context of uncertain reasoning [24].

a)

w2 w1 w4 w3

p1 p2

p3

p4

p1 p2

p3

p4

c) b)

Fig. 2. The main steps for creating the proposed condensed representation for data streams with recurrent macro-worlds. The colored boxes are the macro-worlds,
the white shapes are the micro-worlds, and the labeled arrows and the dashed arrows are the transition probabilities, where the labeled arrows are transitions
between macro-worlds and the dashed arrows are transitions between micro-worlds.

III. FROM STREAMS TO POSSIBLE WORLDS

In the following sections, we propose a condensed rep-
resentation for data streams with recurrent macro-worlds,
which is determined in three main steps (see Figure 2 for
illustration): First, the data stream is divided into transition
phases representing a data distribution drift (dark gray) and
parts belonging to macro-worlds (colored). Second, a graph is
constructed representing the relationships between the macro-
worlds. The edges are labeled with values expressing the
probability of going from one world to another one. Finally,
independent parts of the macro-worlds are identified, so-called
micro-worlds, that reoccur in other macro-worlds.

To model the different macro-worlds and the relations
between them, we employ the notion of possible worlds [25].
Possible worlds consist of propositional letters to which truth
values are assigned. The same letter can exist in different
possible worlds but may have a different truth value. Given two
worlds w and w′, an accessibility relation indicates whether w′
is accessible from w. This allows to evaluate the truth value
of a given statement with respect to several interconnected
worlds. In this context, two operators, � and ♦, are important.
� indicates whether something is necessary (i.e., holds in all
worlds), and ♦ indicates whether something is possible (i.e.,
holds in at least one world).

The condensed representation has two levels of abstraction.
The first level describes the structure of the streams, i.e., which
segments exist and how they are related to each other. On
this level, each segment with a stationary data distribution
(segments S2, S4, S6, S8, S10 in Figure 1) is associated with
a possible world. The worlds themselves are described on
the second level of the abstraction, for which we require a
representation that estimates the underlying data distribution
and supports inference tasks. The latter are basic operations,
which will enable queries on the condensed representation.

In most cases, only parts of the world will reoccur. For
example, in the online store example, only the features CPU
clock speed and display size could be recurrent, whereas the
overall world is different. Therefore, we introduce the notions
of macro- and micro-worlds as addition to possible worlds (the
white shapes in Figure 1 are the micro-worlds). The following
definition formalizes these ideas and are based on the works
by Gamut [25]. Novel compared to Gamut are the notion of
macro- and micro-worlds and the introduction of probabilities.

Definition 1: Let W be a non-empty set of possible worlds
with Ω ⊆ W (macro-worlds), Θ ⊆ W (micro-worlds),
Ω∩Θ = ∅, Ω∪Θ = W , and ∀θ ∈ Θ ∃w ∈ Ω : θ (w. Further,
let R : W × W → [0; 1] be a binary relation representing

the transition probabilities between possible worlds (micro-
and macro-worlds), and let V be a valuation function that
assigns a probability Vw(a) for every proposition letter a in
every context of w ∈ W . Then (Ω,Θ, R, V) is a model for
propositional logic.

Micro-worlds have several benefits: They are independent
components, which can be treated separately. This means that
only the relevant parts are considered when trying to capture
them, which yields an overall smaller and probably more ac-
curate representation. Also, similarities between macro-world
are easier to detect, since worlds can be compared on a micro-
world basis.

IV. CONDENSED REPRESENTATION: LEVEL ONE

The first step in constructing a condensed representation of
streams is to determine segments of the stream that belong to
certain macro-worlds. A stream can be divided into two types
of segments (see Figure 1): macro-world segments containing
macro-world instances (i.e., instances that clearly belong to
a certain macro-world) and transition segments containing
transition instances (i.e., instances that belong to transitions
from one macro-world to another one). Whereas macro-world
instances are used to construct the possible worlds, transition
instances are usually not very interesting, since it is not clear
to which world they belong and are, therefore, unsuitable for
improving the online density estimate of the macro-world.

In order to split the stream into these segments, we
will use two algorithms: detectDrift and equalDensities.
equalDensities compares the distribution between a sample
of instances and a density estimate by employing a Wilcoxon
rank-sum test, and detectDrift identifies changes in the dis-
tribution of the stream using equalDensities. The pseudocode
of both are left out, as they are explained in detail in Section
IV-B. Please notice that these algorithms are not the main focus
of the paper, but rather tools that we employ to accomplish
the task of building a condensed representation of a stream
with recurrent macro-worlds. It is basically possible to use
any concept-drift detection method that is based on the data
distribution of the underlying stream – some of them were
pointed out in the related work section.

In the remainder of this section, we will first explain how
to capture the dependencies between the worlds by observing
transitions from one macro-world to another, and then discuss
how the individual macro-worlds are represented.

Algorithm 1: updateLevelOneRepresentation
Input: unprocessed instances insts, new instances

insts′, the windows SB , SM , SE , density
estimate f , the set of density estimates F , a set
of edges m : F × F → N, significance level α

1 if |insts|+ |insts′| < |SB |+ |SM |+ |SE | then
2 append insts′ to insts
3 else
4 matchFound← false
5 for f ′ ∈ F with equalDensities(f ′, SE , α) do
6 matchFound← true
7 m(f, f ′)← m(f, f ′) + 1
8 f ← f ′

9 if matchFound = false then
10 f ′ ← initialize density estimator
11 m(f, f ′)← 1
12 append f ′ to F
13 f ← f ′

14 for inst1 ∈ insts′ do
15 q ← queue with elements SB , SM , SE

16 inst2 ← q.pop()
17 q.push(inst1)
18 split q into SB , SM , SE

19 if detectDrift(f, SB , SM , SE , α) then
20 insts← insts′[index(inst1) + 1 :]
21 break loop
22 else
23 f.update(inst2)

A. Relationships between macro-worlds

In order to capture the relationships between the macro-
worlds, we basically construct a graph where the nodes are
the macro-worlds of the stream – represented by online density
estimates – and an edge between two nodes N1 and N2 with
label p means that the probability of going from macro-world
w1 to macro-world w2 is p. Algorithm 1 is responsible for
maintaining the relationships between the macro-worlds (lines
1−8) and for passing instances to the second level of the con-
densed representation (line 23), which are the online density
estimates. To accomplish these tasks, it maintains a window
(consisting of the sequences SB , SM , SE), the instances that
just arrived (insts′), and an additional buffer (insts), which we
use to ensure that we possess enough instances to detect data
distribution drifts. As soon as enough instances for concept
drift detection are available (i.e., |insts| ≥ |SB |+|SM |+|SE |),
the algorithm moves the window instance by instance (line
15− 18) and performs a test to detect data distribution drifts.
If a drift has been detected (line 19), all instances up to this
point are removed, which includes all instances from SB ,
SM , and SE (see Figure 3), and the algorithm waits until
enough instances are available again (line 1−3). If no drift has
been detected (line 22), it updates the counters of m, which
will be used to estimate the probabilities of the edges. For
any two density estimates f, f ′ ∈ F , m stores the number
of times we transitioned from the macro-world represented
by f to the macro-world represented by f ′. Using m, the
transition probability p of going from f ∈ F to f ′ ∈ F is
computed as follows (simply maximum likelihood, i.e., the

t0

t0 SB SM SE

insts insts′

t0 SB SM SE

t1 SB SM SE

f ...
ti SB SM SE

ti

Fig. 3. In order to detect drifts in the data distribution of the stream, a
window is used that is split into three segments of equal size: SB , SM , and
SE . If enough instances are available to perform drift detection, insts are
exactly the instances contained in SB ◦SM ◦SE , whereas insts′ are the new
instances that need to be processed. In order to process the next instance of
insts′ (dark gray), the algorithm treats SB ◦SM ◦SE as a queue and removes
the oldest instance whenever a new instance is appended. The instance that
has been removed is then forwarded to the current density estimate f . If a
drift is detected (see ti), all previous instances are discarded and the algorithm
waits until enough instances are available for further drift detections.

relative frequency): p = m(f,f ′)∑
g,g′∈F m(g,g′) . In lines 5 − 7, the

algorithm tries to match the emerging density estimates to one
of the already existing ones. If none is found, a new density
estimate is initialized. In the last step of the algorithm, the
instances that belonged to SB in the previous iteration (see
t1 in Figure 3) are forwarded to the current online density
estimate (line 23).

B. Identifying macro-worlds

The procedure described above needs to identify segments
with macro-world instances and segments with transition in-
stances. In an supervised setting, there exist several methods
and frameworks to detect concept drift and recurrent concepts
(e.g., [13], [9]), which usually measure some kind of error
of the classifiers and use a statistical test or property to
detect a concept drift. However, since we want to use joint
density estimates as condensed representation, the supervised
setting does not apply in our case. Other approaches such as
methods proposed by Kifer et al. [7] or Dries and Rückert
[8] consider the data distribution of the stream to detect data
distributions drift. Since the main focus of the paper is the
condensed representation of streams with recurrent macro-
worlds, we decided in favor of a simple approach, in our
case: the CNF density estimation test [8], for which the authors
pursued a window-based approach. They split the window into
three parts and determine whether the first two parts have the
same distribution as the last one. In order to capture changes
in the distribution, they transform the instances to a binary
representation and compare the distributions of the different
parts. For this purpose, they introduce a predicate covers,
use this predicate to describe subsets of variables that are
consistent with a given set of instances, and perform a Mann-
Whitney test to decide whether there is a significant difference
between the distributions.

Following this idea, we employed a window-based ap-
proach (a buffer) to ensure that only those instances reach
the condensed representation that really belong to the corre-
sponding concept. Therefore, we keep instances in a buffer
as long as the density estimation test could still detect a data

distribution drift. Hence, we forward only the instances of SB

to the density estimate of the current macro-world. Instances
from SM and SE will only be forwarded if they become part of
an SB of another partition, which also means that we probably
do not capture all the macro-world instances that are available.
To detect changes in the distribution, we perform a Wilcoxon
rank-sum test [26], [27], [28] on SB and SE using the current
density estimate – instead of the predicate covers.

V. CONDENSED REPRESENTATION: LEVEL TWO

In the previous section, we described how to identify the
macro-worlds of a stream and how to model the relationships
to each other using the possible worlds semantics. In this
section, we consider the second level and explain how the
macro-worlds can be represented in a condensed way. For this
purpose, we introduce modules to density estimates that will
serve as an estimate for the micro-worlds.

Definition 2: Let X := {X1, . . . , Xn} be a set of variables
and let f(X1, . . . , Xn) be a discrete joint density. If X =
A1∪̇ . . . ∪̇Ak, k > 1, and Ai (X for 1 ≤ i ≤ k, then the
factors of the product

∏k
i=1 fi(Ai) are called modules of f if,

for each 1 ≤ i ≤ k, fi is a discrete joint density and there
is no decomposition Ai = B1∪̇ . . . ∪̇Bl, such that l > 1 and
fi(Ai) can be represented by a product

∏l
j=1 fi,j(Bj) where

fi,j is a discrete joint density for 1 ≤ j ≤ l.

In other words, modules are the independent fac-
tors of a density. For example, if a discrete joint den-
sity f(X1, X2, . . . , X8) can be represented as a product
f1(X1, X3, X8) · f2(X2, X4, X5) · f3(X6) · f4(X7) and the
fi, i ∈ {1, 2, 3, 4}, cannot be decomposed any further, then
f1, f2, f3, and f4 are the modules of f .

A. Modules in density estimates

For the condensed representation, we will employ the
online density estimators, called EDDO [2], which can be
used to derive modules for the estimate they represent. For
example, if a Hoeffding tree [29] is used as base classifier,
then the Hoeffding tree algorithm implicitly chooses a subset
of variables to construct the tree. If a graph is constructed that
has the classifiers of the chain as nodes and connects two nodes
if the classifiers belonging to that node have common variables,
then the cliques in the graph and all nodes that do not belong to
a clique are the modules of the estimate. However, in this work
we will pursue a more explicit approach to modules, which
is applicable to data streams consisting of discrete and/or
continuous variables. The algorithm we are about to present
constantly estimates the structure of the density by grouping
the variables into modules, which is achieved by determining
connected components of the variables based on the normal-
ized mutual information – a measure for the dependence of
two random variables. For each module, an online density
estimate is employed to provide a density estimate for this
module. When new instances arrive, it may turn out that the
proposed module does no longer match the data, because it is
not a module at all, a part of a larger module, or only a part
of it is a module. In this case, the module is entirely removed,
and the estimate of each newly introduced or modified module
is then replaced by a new online density estimate.

V1

V5

V70.21

0.18

V2 V3 V4

V9

0.3 0.47 0.42

0.47
0.54

Fig. 4. The figure shows variables (circles) that are dependent on each other
according to the normalized mutual information. The values on the edges
are the normalized mutual information for a given pair of variables. The
algorithm creates two clusters: the variables V1, V5, and V7 are clustered and
the variables V2, V3, V4, and V9. Although there is a connection between V7

and V2, the clusters are not joined, since the normalized mutual information
values within the clusters are too different (see line 8 of Algorithm 2). For
the same reason, the algorithm also does not group the variables V7, V2, V3,
V4, and V9 together.

In the discrete case, the mutual information [30] of
two variables X and Y is defined as I(X,Y) :=∑

x∈X
∑

y∈Y p(x, y) log
(

p(x,y)
p(x)·p(y)

)
, where p(x, y) is the

probability of (x, y) ∈ X × Y and p(x) and p(y) are the
corresponding marginal probabilities. For continuous variables,
the summations are replaced by integrals. However, instead of
computing integrals for continuous variables, we will discretize
continuous variables using an online discretization method pro-
posed by Gama and Pinto [31]. Since the mutual information
does not necessarily lie between 0 and 1, which would be
advantageous to define a general threshold that enables us
to decide whether two variable are considered dependent on
each other, we will use a normalized version of the mutual
information (NMI) [32]:

NMI(X,Y) :=
I(X,Y) · 2

H(X) +H(Y)
,

where H is the entropy. The threshold to decide whether two
variables are dependent on each other is set to some value θ,
i.e., a value smaller than θ means not dependent, and a value
larger than or equal to θ means dependent. However, not all
variables that are considered as dependent on each other should
end up in the same module. In some initial experiments, we
noticed that the range of the normalized mutual information is
often quite different and we also noticed that the NMI values
provide important information about the variables that should
be grouped together. Figure 4 illustrates a typical situation.
Here, variables V1, V5, and V6 are grouped together, since
they have a similar NMI value of around 0.2. Variables V2,
V3, V4, and V9 are grouped together, since they also have
a similar NMI value (around 0.48). But both groups are not
joined, although V7 and V2 are connected to each other.

Algorithm 2 maintains the modules and their estimates. It
first updates the normalized mutual information NMI for all
pairs of variables (lines 2 − 3). Then, every ρ instances (line
4), the structure of the modules is recomputed. In lines 5− 6,
D is determined, which defines dependencies between two
variables Xi and Xj iff their normalized mutual information
is greater than or equal to θ1. Subsequently, variables with a
similar normalized mutual information are grouped together
and considered as modules (lines 7 − 9), so that we obtain
a simple clustering of the variables based on the normalized
mutual information. In the remainder, the algorithm reuses

Algorithm 2: updateLevelTwoRepresentation
Input: variables X , recomputation threshold ρ ∈ N,

instance counter count, set of modules
modules, instance inst, object NMI , NMI
threshold θ1, clustering threshold θ2

1 modules′ ← ∅
2 for (Xi, Xj) ∈ X ×X , 1 ≤ i < j ≤ n do
3 update NMI(Xi, Xj)
4 if count mod ρ = 0 then
5 initialize D : X ×X 7→ {0, 1}
6 set D(Xi, Xj) = 1 iff NMI(Xi, Xj) >= θ1
7 C0 ← {Xi |6 ∃Xj : D(Xi, Xj) < θ1}
8 Create clustering C1, . . . , Ck, s.t.

∀X1, X2, X3, X4 ∈ Ci :
NMI(X1, X2)−NMI(X3, X4)

NMI(X1, X2)
< θ2

9 C ← {C0, C1, . . . , Ck}
10 for Ci ∈ C do
11 m← create module from Ci

12 e← initialize density estimate
modules′.append((m, e))

13 for (m, e) ∈ modules′ do
14 if ∃e′ : (m, e′) ∈ modules then
15 e← e′

16 modules′.append((m, e))
17 m.update(inst)
18 count← count+ 1

density estimates for every module existing before (lines
10 − 12) and passes the instance inst to all modules (line
17).

B. Shared modules

A module is an estimate for a micro-world that can be
shared among several possible worlds. If a new macro-world
emerges, we need to examine if it contains already discovered
modules. Since macro-worlds are represented by estimates of
joint densities, we require an algorithm that tests whether the
estimates are constructed from the same distribution. A good
choice for this task is usually the KL-divergence, which is,
however, not suitable in our setting for several reasons: (1)
Computing the KL-divergence is computationally expensive.
(2) The estimates can differ with respect to their precision,
since one estimate has been constructed from millions of
instances, whereas the other one could have been constructed
from a few thousand instances only. (3) Even if the estimates
have reached the same level of precision, it remains unclear
which KL-divergence is acceptable. As an alternative, we will
use equalDensities, which employs a Wilcoxon rank-sum test
to compare two distributions (see Section IV-B for reference).
Using this, we can compare the distribution of the already
discovered module and the newly emerging module.

C. Diverging of recurrrent micro-worlds

Since a module that is shared among several possible
worlds W ′ is the same object, updating the corresponding
module would always affect every world in W ′. Hence, if a
shared module develops differently, it can no longer be shared.

In this case, we make individual copies and assign them to
each world belonging to W ′. It is crucial that the copies are
created before a deviation occurred. Otherwise, this deviation
would be a part of all worlds in W ′. In order to solve this, we
perform data distribution drift detection in combination with a
buffering system as described in Section IV.

VI. EVALUATION

In this section, we evaluate the algorithms presented in
Section IV and Section V. We first measure how modules affect
the performance of the density estimate using synthetic and
real-world datasets (the corresponding online density estimator
will be denoted by EDDOMod). Then the construction of
possible worlds is evaluated on real-world data.

A. Evaluating modules

Compared to EDDO, EDDOMod provides a more ex-
plicit representation of the density by grouping variables into
independent components (modules). This leads to a represen-
tation that is easier to interpret by users, since variables that
are dependent on each other are grouped together. Despite this
more explicit representation, we will show that both methods
have a similar performance. Since Geilke et al. already com-
pared EDDO to 24 Bayesian net structure learners from the
bnlearn package [33] with a comprehensive set of experiments
and showed that EDDO outperforms standard Bayesian net
structure learners, we focus our presentation on a comparison
of EDDOMod and EDDO. (In further experiments, we also
compared these Bayesian structure learners to EDDOMod.
For example, on the US-Census dataset, the best EDDOMod

estimator has an average log-likelihood of −40.47, whereas
the best Bayesian structure learner TABU mle has an average
log-likelihood of −45.3.)

As synthetic data, we generated streams from several
Bayesian networks. For each stream, we randomly selected
a number of modules 1 < k ≤ 5, and, for each module,
we created between 4 and 8 new variables. Subsequently,
we randomly generated Bayesian networks for each module
using the random.graph method of the bnlearn package. Its
parameter method was set to melancon, which uses a Markov
chain to draw acyclic, directed graphs uniformly at random
[34]. In order to generate the conditional probability tables
(CPTs) of the nodes, we randomly chose values from the
interval [0; 1) for each entry and normalized the columns, such
that they sum up to 1. From the streams generated this way,
we drew M instances (M ∈ {103, 104, 105, 106}). As real-
world datasets, we used several publicly available datasets:
Electricity, Shuttle, and Covertype. Additionally, we modified
the water level dataset prepared by Schlüter and Conrad [35],
where the water level of rivers in Germany were measured
over twelve years. Since the data is very sparse, we only
considered two stations (Arloff and Meschede) and removed
instances where parts of the measurements were missing. For
each station, we had nine features: the values of the closest
four neighboring stations of the previous two days (eight
values) and the class attribute indicating whether the water
level increased, decreased or stayed the same.

In order to measure the performance of each estimator, we
split the stream in two parts, construct the density estimate

EDDO(EWCC, NB)

EDDO(ECC, NB)

EDDO(CC, NB)

EDDO(EWCC, MC)

EDDO(ECC, MC)

EDDO(CC, MC)

-1

-0.5

 0

 0.5

 1

EDDO(EWCC, NB)

EDDO(ECC, NB)

EDDO(CC, NB)

EDDO(EWCC, MC)

EDDO(ECC, MC)

EDDO(CC, MC)

b
n

-1
0

3

b
n

-1
0

4

b
n

-1
0

5

b
n

-1
0

6

e
le

c
tr

ic
it
y

s
h

u
tt

le

w
a

te
rl
e

v
e

l

c
o

v
e

rt
y
p

e

-1

-0.5

 0

 0.5

 1

Fig. 5. The figure shows the percentaged difference of the average log-
likelihood (upper plot) and the percentaged rank sum (lower plot) between
EDDO and EDDOMod for various datasets. The percentaged values are
determined by first computing the average log-likelihood and the rank sum
of EDDO and EDDOMod, then computing the difference of the values
of EDDOMod and EDDO and dividing it by the value of EDDO. For
each category (synthetic and real-world), the datasets are first ordered by their
number of attributes and then by their number of instances.

-10.2

-10.1

-10

-9.9

-9.8

-9.7

-9.6

-9.5

EDDO(CC, MC) EDDO(CC, NB) EDDO
Mod

(CC, MC) EDDO
Mod

(CC, NB)

Fig. 6. This figure illustrates the performance (measured in average log-
likelihood) on the electricity dataset of EDDO and EDDOMod using
a single random classifier chain. In many cases, EDDOMod outperforms
EDDO. For other datasets, such as shuttle or covertype, the opposite can be
observed.

from the first part, and measuring the average log-likelihood
on the second part. Subsequently, we computed the average
rank sum for each estimator and for each dataset. Although
the KL-divergence would have been a better choice for the
synthetic data, we had to use the log-likelihood due to the
large number of attributes (up to 40).

The results are summarized by Figure 5. Although in
many cases, the rank sum is lower for EDDO (exceptions
are, for example, the water level dataset, some cases of the
electricity dataset, or bn-103), the heat map at the top shows
that the differences are rather low (exceptions are the shuttle
and covertype dataset). Especially if the number of instances
increases, while the attributes stay fixed, EDDOMod even
outperforms EDDO in many cases. This effect is due to
the way the proposed method manages its modules. In the
beginning, when only a few instances have been observed,
the partitioning of the variables into modules changes quite
strongly before it starts stabilizing. At that time, the previous

modules have been discarded in favor of new modules, which
results in fewer training instances for these modules, thereby
yielding an estimate that is not as accurate as an estimate that
has been computed with all instances. With more instances, this
effect becomes less visible. For datasets with many attributes
(e.g., covertype) or many values per attributes (e.g., shuttle),
the effect is more visible, because fewer observations are avail-
able compared to the number of attribute-value combinations,
which result in a worse estimate of the mutual information.
As stated in the beginning of the section, there is a, albeit
relatively small, prize to be paid for the explicit representation
of modules, macro-/micro-worlds and transition probabilities.

B. Recurrent macro- and micro-worlds

Several publications monitor data distributions of streams
to detect concept drifts (e.g, Gonçalves Jr and Maior de Barros
[13]) and use the detected drifts to train new classifier or to
continue training previous classifiers. However, constructing a
universal condensed representation that enables queries – and
as a result enables data mining and machine learning tasks on
top of it – has to the best of our knowledge not been considered
before. Hence, there is currently no other method trying to
detect something like recurrent macro- and micro-worlds, and
we could only perform the evaluation of recurrent worlds based
on a real-world data such as the water level dataset.

How quickly the distribution of the dataset changes is
visualized by Figure 7 (see the plot at the top), which shows
the distance of each instances to the vector ~0 – this is not to
be confused with the distribution of the data, it only indicates
changes in the distribution. Between two data distribution drifts
there are often only a few hundred instances, which makes
the detection of macro- and micro-worlds a challenging task.
However, even in this difficult setting, the proposed algorithm
provides a rather accurate description of the stream, as illus-
trated at the bottom of Figure 7. Large parts of this stream
segment are almost exactly captured by the macro-worlds,
whereas other parts show only minor deviations. In total,
the algorithm finds 416 macro- and 1259 micro-worlds, of
which 484 micro- and 110 macro-worlds are unique. Although
it is difficult to measure the meaningfulness of the micro-
world detection, its classification is performed according to our
intuition of the data. For example, it groups variables belonging
to the same stations (i.e., measurements from different days),
variables indicating the current trend of the stations (i.e.,
whether the water level decreased, increased, or stayed the
same), or variables belonging to the same neighboring stations.

In order to evaluate the detection of recurrent micro-
and macro-worlds, we connected the water level dataset two
times in a row. Hence, all macro- and micro-worlds have to
reoccur again and should be detected by the algorithm. In this
setting, the proposed method rediscovers 100% of the macro-
worlds and 78.6% of the micro-worlds, which indicates that
EDDOMod is, in principle, able to rediscover macro- and
micro-worlds.

VII. OUTLOOK: QUERIES ON POSSIBLE WORLDS

The proposed condensed representation is not only able
to represent streams with recurrent macro-worlds, but also
enables queries on top of it, which can be used to analyze

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

0

2

4

6

8

10

12

14

16

Fe
b
 2

0
0

7

A
p
r

2
0

0
7

Ju
n
 2

0
0

7

A
u
g
 2

0
0

7

O
kt

 2
0

0
7

D
e
z

2
0

0
7

Fe
b
 2

0
0

8

0

2

4

6

8

10

12

14
50 5 14 35 46 12 33 65 19 42 16 36 70 34 75 76 21 19 19 34 11 6 14 77 19 36 19 40 47 35 16 3 5 12 6 24 44 40 49 11

Fig. 7. At the top, changes in the data distribution are illustrated by
plotting the distance to the vector ~0 for each measurement. At the bottom,
macro-worlds are shown that have been detected between January 2007 and
February 2008 (recurrent macro-worlds share the same number and every
number smaller than or equal to 74 already occurred earlier).

the underlying data. In order to model this, we introduce the
following operators:

Definition 3: Let M = (Ω,Θ, R, V) be a model for propo-
sitional logic, and let p be some probability. Then VM,w(φ),
the probability of φ in w given M , is defined by the following
clauses, which are an extension of the clauses by Gamut [25]:

1) VM,w(a) = Vw(a), ∀ variable-value pairs a
2) VM,w(¬φ) = p iff VM,w(φ) = 1− p
3) VM,w(φ ∨ ψ) = min(VM,w(φ), VM,w(ψ))
4) VM,w(φ ∧ ψ) = max(VM,w(φ), VM,w(ψ))
5) VM,w(φ→ ψ) = min(VM,w(¬φ), VM,w(ψ))
6) VM,w(�φ) = minw′∈W :R(w,w′)(VM,w′(φ))
7) VM,w(♦φ) = maxw′∈W :R(w,w′)(VM,w′(φ))

Definition 3 provides the foundation to perform queries
on the condensed representation. With inference algorithms,
one can first restrict the condensed representation to the parts
which are interesting to the user. Subseqently, questions like:
Given world w, what is the probability that a is true? can be
posed. If the � operator is used, this probability is computed
with respect to all worlds directly or indirectly connected to w,
and if the ♦ operator is used, this probability is computed with
respect to the world that is directly or indirectly connected to
w and yields the largest probability for a. To compute those
probabilities, inference algorithms as the ones introduced by
Geilke et al. [2] can be employed.

VIII. CONCLUSIONS

We proposed a novel approach of representing data from a
stream with recurrent macro-worlds (stationary data distribu-
tions) using possible worlds and online density estimates. As
the density estimates enable data mining and machine tasks

without access to the raw data [1], the proposed representation
allows to perform these tasks on a much broader scale. In the
experiments, we showed that the representation is accurate,
to a certain degree, and can capture not only recurrent macro-
worlds, but also enables the detection of micro-worlds. This is,
to the best of our knowledge, the first time that possible worlds
and micro-worlds are employed in the context of streams with
recurrent data distributions.

In the future, we intend to work on several extensions of
modules and the way they are computed. In the current version,
a module is always considered a joint density, which could be
extended to conditional densities. Moreover, we plan to reuse
existing estimates more efficiently. If a module changes, the
estimate is discarded and replaced by a completely new one.
In some cases, however, a module might be split into several
smaller modules, such that the current estimate can be reused
by marginalizing out the variables. Hence, we could use an
estimate that has been constructed from possibly thousands of
instances instead of using an estimate that is constructed from
only a few instances.

REFERENCES

[1] M. Geilke, A. Karwath, and S. Kramer, “A probabilistic condensed
representation of data for stream mining,” in International Conference
on Data Science and Advanced Analytics, 2014, pp. 297–303. [Online].
Available: http://dx.doi.org/10.1109/DSAA.2014.7058088

[2] M. Geilke, A. Karwath, E. Frank, and S. Kramer, “Online estimation
of discrete densities,” in Proceedings of the 13th IEEE International
Conference on Data Mining, 2013, pp. 191–200.

[3] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues, “Learning with drift
detection,” in Advances in Artificial Intelligence - Proceedings of the
17th Brazilian Symposium on Artificial Intelligence, 2004, pp. 286–295.

[4] M. Harel, S. Mannor, R. El-Yaniv, and K. Crammer, “Concept drift
detection through resampling,” in Proceedings of the 31st International
Conference on Machine Learning, 2014, pp. 1009–1017.

[5] S. H. Bach and M. A. Maloof, “A bayesian approach to concept drift,” in
Advances in Neural Information Processing Systems 23: Proceedings of
the 24th Annual Conference on Neural Information Processing Systems,
2010, pp. 127–135.

[6] J. Demsar, Z. Bosnic, and I. Kononenko, “Visualization and concept
drift detection using explanations of incremental models,” Informatica
(Slovenia), vol. 38, no. 4, 2014.

[7] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in (e)Proceedings of the Thirtieth International Conference
on Very Large Data Bases, 2004, pp. 180–191.

[8] A. Dries and U. Rückert, “Adaptive concept drift detection,” Statistical
Analysis and Data Mining, vol. 2, no. 5-6, pp. 311–327, 2009.

[9] J. Gama and P. Kosina, “Recurrent concepts in data streams
classification,” Knowledge and Information Systems, vol. ro. 2013,
2013. [Online]. Available: http://dx.doi.org/10.1007/s10115-013-0654-6

[10] J. B. Gomes, E. M. Ruiz, and P. A. C. Sousa, “Learning
recurring concepts from data streams with a context-aware
ensemble,” in Proceedings of the 2011 ACM Symposium on
Applied Computing, 2011, pp. 994–999. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982403

[11] S. Sakthithasan and R. Pears, “Mining recurrent concepts in
data streams using the discrete fourier transform,” in Proceedings
of the 16th International Conference on Data Warehousing and
Knowledge Discovery, 2014, pp. 439–451. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10160-6 39

[12] M. Lazarescu, “A multi-resolution learning approach to tracking concept
drift and recurrent concepts,” in Pattern Recognition in Information
Systems, Proceedings of the 5th International Workshop on Pattern
Recognition in Information Systems, 2005, p. 52.

[13] P. M. G. Jr and R. S. M. de Barros, “Rcd: A recurring concept drift
framework,” Pattern Recognition Letters, vol. 34, no. 9, pp. 1018–1025,
2013.

[14] M. M. Masud, T. Al-Khateeb, L. Khan, C. C. Aggarwal, J. Gao,
J. Han, and B. M. Thuraisingham, “Detecting recurring and novel
classes in concept-drifting data streams,” in Proceedings of the 11th
IEEE International Conference on Data Mining, 2011, pp. 1176–1181.

[15] B. Krawczyk and M. Wozniak, “Incremental learning and forgetting
in one-class classifiers for data streams,” in Proceedings of the 8th
International Conference on Computer Recognition Systems, 2013, pp.
319–328.

[16] B. Liu, Y. Xiao, P. S. Yu, L. Cao, Y. Zhang, and Z. Hao, “Uncertain
one-class learning and concept summarization learning on uncertain
data streams,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 2, pp. 468–484, 2014.

[17] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting data streams with skewed distributions,” in Proceedings
of the Seventh SIAM International Conference on Data Mining, 2007,
pp. 3–14.

[18] N. Pasquier, R. Taouil, Y. Bastide, G. Stumme, and L. Lakhal, “Generat-
ing a condensed representation for association rules,” Journal Intelligent
Information Systems, vol. 24, no. 1, pp. 29–60, 2005.

[19] A. Bykowski and C. Rigotti, “A condensed representation to find
frequent patterns,” in Proceedings of the Twentieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 2001.

[20] P. B. Volk, F. Rosenthal, M. Hahmann, D. Habich, and W. Lehner,
“Clustering uncertain data with possible worlds,” in Proceedings of the
25th International Conference on Data Engineering, 2009, pp. 1625–
1632. [Online]. Available: http://dx.doi.org/10.1109/ICDE.2009.174

[21] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, “The pursuit
of a good possible world: extracting representative instances of
uncertain graphs,” in Proceedings of the 2014 International Conference
on Management of Data, 2014, pp. 967–978. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2593668

[22] Z. Zhao, D. Yan, and W. Ng, “Mining probabilistically
frequent sequential patterns in large uncertain databases,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 5, pp. 1171–1184, 2014. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.124

[23] L. Sun, R. Cheng, D. W. Cheung, and J. Cheng, “Mining
uncertain data with probabilistic guarantees,” in Proceedings of

the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010, pp. 273–282. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835841

[24] E. Wilkins and S. H. Lavington, “Belief functions and the possible
worlds paradigm,” J. Log. Comput., vol. 12, no. 3, pp. 475–495, 2002.
[Online]. Available: http://dx.doi.org/10.1093/logcom/12.3.475

[25] L. Gamut, Logic, Language, and Meaning: Intensional logic
and logical grammar, ser. Logic, Language, and Meaning.
University of Chicago Press, 1991. [Online]. Available:
http://books.google.de/books?id=ktqxlzcc5nQC

[26] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, Dec. 1945. [Online]. Available:
http://dx.doi.org/10.2307/3001968

[27] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 03 1947. [Online].
Available: http://dx.doi.org/10.1214/aoms/1177730491

[28] D. Moore, G. McCabe, and B. Craig, Introduction to the
Practice of Statistics. W.H. Freeman, 2009. [Online]. Available:
http://books.google.de/books?id=x0kkSwAACAAJ

[29] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2000, pp. 71–80.

[30] T. M. Cover and J. A. Thomas, Elements of information theory (2. ed.).
Wiley, 2006.

[31] J. Gama and C. Pinto, “Discretization from data streams: applications
to histograms and data mining,” in Proceedings of the 2006 ACM
symposium on Applied computing, 2006, pp. 662–667.

[32] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge University Press, 2008.

[33] M. Scutari, “Learning Bayesian networks with the bnlearn R package,”
Journal of Statistical Software, vol. 35, no. 3, pp. 1–22, 2010.

[34] G. Melançon and F. Philippe, “Generating connected acyclic digraphs
uniformly at random,” Inf. Process. Lett., vol. 90, no. 4, pp. 209–213,
2004.

[35] T. Schlüter and S. Conrad, “Hidden markov model-based time
series prediction using motifs for detecting inter-time-serial
correlations,” in Proceedings of the 2012 ACM Symposium
on Applied Computing, 2012, pp. 158–164. [Online]. Available:
http://doi.acm.org/10.1145/2245276.2245308

