

Modeling Recurrent Distributions in Streams using Possible Worlds

Michael Geilke, Andreas Karwath, and Stefan Kramer

Johannes Gutenberg-Universität Mainz, Germany

October 20, 2015

What is the data distribution of the sensors in the living room?

Two residents are in the living room. What is the probability that they watch TV?

Recurrences

- day and night
- working days and weekends
- seasons

Recurrences

- pattern could be more complex
- may only affect a part of the house

Goal: a representation that

- is constantly updated
- is representing current and historical data distributions,
- is able to represent recurrences
- provides a query mechanism

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

do all of that in an online fashion

• extension of an approach by Dries and Rückert

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*
- perform drift detection with Wilcoxon rank-sum test

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*
- perform drift detection with Wilcoxon rank-sum test
- update *f* with clean instances only

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*
- perform drift detection with Wilcoxon rank-sum test
- update *f* with clean instances only

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*
- perform drift detection with Wilcoxon rank-sum test
- update *f* with clean instances only

Recognize Regions of Drift

Window-based approach

- extension of an approach by Dries and Rückert
- compute density values with current estimate *f*
- perform drift detection with Wilcoxon rank-sum test
- update *f* with clean instances only

Recurrences of Densities

Recurrent or new?

Recurrences of Densities

Recurrent or new?

- compare with pool of existing density estimates
- use statistical test we proposed earlier
- reactivate estimate if one is found
- initialize a new one otherwise

Recurrences of Densities

Recurrent or new?

- compare with pool of existing density estimates
- use statistical test we proposed earlier
- reactivate estimate if one is found
- initialize a new one otherwise

Recurrent or new?

- compare with pool of existing density estimates
- use statistical test we proposed earlier
- reactivate estimate if one is found
- initialize a new one otherwise

Recurrent or new?

- compare with pool of existing density estimates
- use statistical test we proposed earlier
- reactivate estimate if one is found
- initialize a new one otherwise

Recurrent or new?

- compare with pool of existing density estimates
- use statistical test we proposed earlier
- reactivate estimate if one is found
- initialize a new one otherwise

Recurrences of Density Parts

Introduction of modules

 $f(X_1, X_2, \dots, X_8) = f_1(X_1, X_3, X_8) \cdot f_2(X_2, X_4, X_5) \cdot f_3(X_6) \cdot f_4(X_7)$

If the f_i cannot be decomposed any further, then f_1 , f_2 , f_3 , f_4 are called the modules of f.

Query Mechanism

- probabilistic extension of possible worlds semantics
- requires density estimators supporting inference tasks

Query Mechanism

- probabilistic extension of possible worlds semantics
- requires density estimators supporting inference tasks

Query 3 [over multiple worlds]

Given world *W*, what is the probability that the resident will switch on the light in the office room?

Evaluation: Modules

- evaluation on synthetic and real-world datasets
- without modules performance is better in many cases, but only slightly
- more explicit representation that enables detection of recurrences

Datasets		
Synthetic		
Bayesian ne different nu different nu different nu	etworks with mbers of nodes, mbers of instances mbers of variable groups	
Real-World		
Electricity Shuttle Waterlevel Covertype		

<u>4</u>(

Recurrences		
Densities	Modules	
416	1259	
100%	78%	

Conclusions and Future Work

- framework to model recurrent densities and recurrent parts of the densities
- online estimator
- extension of possible worlds semantics for query mechanism

Future Work:

- more sophisticated modeling of density parts (conditional)
- recycling of modules
- implementation of query mechanism

Thank you for your attention

