
Modeling Recurrent Distributions in Streams 
using Possible Worlds 

Michael Geilke, Andreas Karwath, and Stefan Kramer  

 Johannes Gutenberg-Universität Mainz, Germany  

October 20, 2015  



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

2 

Smart 



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

3 

Smart 



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

4 

Smart 



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

5 

Smart 

EDDO 



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

6 

Smart 

 𝑓 

EDDO 



Modeling Recurrent Distributions in Streams using Possible Worlds 

 

7 

Smart 

 𝑓 

EDDO 

Query 1 [marginalize] 

What is the data distribution of the sensors 
in the living room?  
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Query 2 [setting hard evidence] 

Two residents are in the living room.  
What is the probability that they watch TV? 
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POEt Alg 1 Alg 2 

Out 1 Out 2 Itemsets 
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Recurrences 

 day and night 

 working days and weekends 

 seasons 
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Recurrences 

 pattern could be more complex 

 may only affect a part of the house 
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Goal: a representation that 

 is constantly updated 

 is representing current and historical data distributions, 

 is able to represent recurrences 

 provides a query mechanism 
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do all of that in an online fashion 

Tasks for proposed method 

1. recognize regions of drift 

2. represent density of data stream segments 

3. identify recurrences on the density level 

4. identify recurrences between parts of different densities 
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A B C 
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Window-based approach 

• extension of an approach by Dries and Rückert 

• compute density values with current estimate f 
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Window-based approach 

• extension of an approach by Dries and Rückert 

• compute density values with current estimate f 

• perform drift detection with Wilcoxon rank-sum test 

A B C 

 𝑓  𝑓 Wilcoxon 
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Window-based approach 

• extension of an approach by Dries and Rückert 

• compute density values with current estimate f 

• perform drift detection with Wilcoxon rank-sum test 

• update f with clean instances only 

C 
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Recurrent or new? 
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𝑓1 
𝑓2 

𝑓3 

𝑓4 𝑓5 

  

Recurrent or new? 

• compare with pool of existing density 
estimates 

• use statistical test we proposed earlier 

• reactivate estimate if one is found 

• initialize a new one otherwise 

𝑓𝑖 
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𝑓1 
𝑓2 

𝑓3 

𝑓4 𝑓5 

Recurrent or new? 

• compare with pool of existing density 
estimates 

• use statistical test we proposed earlier 

• reactivate estimate if one is found 

• initialize a new one otherwise 

Wilcoxon 
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Recurrences of Density Parts 
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𝑓 𝑋1, 𝑋2, … , 𝑋8 = 𝑓1 𝑋1, 𝑋3, 𝑋8  ∙ 𝑓2 𝑋2, 𝑋4, 𝑋5  ∙ 𝑓3 𝑋6  ∙ 𝑓4 𝑋7  

Introduction of modules 

 

 

If the 𝑓𝑖 cannot be decomposed any further, then 𝑓1, 𝑓2, 𝑓3, 𝑓4  

are called the modules of 𝑓. 
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p1 p2 

p3 

p4 

• probabilistic extension of 
possible worlds semantics 

• requires density estimators 
supporting inference tasks 
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p1 p2 

p3 

p4 

Query 3 [over multiple worlds] 

Given world W, what is the probability that the resident will switch 
on the light in the office room? 

• probabilistic extension of 
possible worlds semantics 

• requires density estimators 
supporting inference tasks 
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 evaluation on  
synthetic and real-world datasets 

 without modules performance is 
better in many cases, but only slightly 

 more explicit representation that 
enables detection of recurrences 

 

Datasets 

Synthetic 

Bayesian  networks  with  
different numbers of nodes, 
different numbers of instances 
different numbers of variable groups 

Real-World 

Electricity 
Shuttle 
Waterlevel 
Covertype 
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Recurrences 

Densities Modules 

416 1259 

100% 78% 
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 framework to model recurrent densities and 

recurrent parts of the densities 

 online estimator 

 extension of possible worlds semantics for 
query mechanism 

 

Future Work: 

 more sophisticated modeling of density parts (conditional) 

 recycling of modules 

 implementation of query mechanism 
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