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Query 1 [marginalize]

What is the data distribution of the sensors
in the living room?
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Query 2 [setting hard evidence]

Two residents are in the living room.
What is the probability that they watch TV?
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Recurrences
= day and night

=  working days and weekends

Smart

" seasons
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Recurrences
= pattern could be more complex
= may only affect a part of the house
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Goal: a representation that

= js constantly updated

= js representing current and historical data distributions,
= js able to represent recurrences

= provides a query mechanism
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Tasks for proposed method

1. recognize regions of drift

2. represent density of data stream segments

3. identify recurrences on the density level

4. identify recurrences between parts of different densities

do all of that in an online fashion
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* extension of an approach by Dries and Ruckert
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* extension of an approach by Dries and Ruckert
 compute density values with current estimate f
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* extension of an approach by Dries and Ruckert

Window-based approach

 compute density values with current estimate f
* perform drift detection with Wilcoxon rank-sum test
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Window-based approach

* extension of an approach by Dries and Ruckert
 compute density values with current estimate f

* perform drift detection with Wilcoxon rank-sum test
* update f with clean instances only
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Window-based approach

* extension of an approach by Dries and Ruckert
 compute density values with current estimate f

* perform drift detection with Wilcoxon rank-sum test
* update f with clean instances only
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Recurrent or new?

 compare with pool of existing density
estimates

e use statistical test we proposed earlier
* reactivate estimate if one is found

 jnitialize a new one otherwise
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Recurrences of Densities
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Wilcoxon

Recurrent or new?

 compare with pool of existing density
estimates

e use statistical test we proposed earlier
* reactivate estimate if one is found

 jnitialize a new one otherwise
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Recurrences of Density Parts - —
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Introduction of modules
f(X1»X2r---»X8) — f1(X1»X3:X8) 'fz(Xz»szXs) 'f3(X6) 'f4(X7)

If the f; cannot be decomposed any further, then f1, 15, f3, fa
are called the modules of f.
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Query Mechanism

probabilistic extension of
possible worlds semantics

requires density estimators
supporting inference tasks
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Query Mechanism

e probabilistic extension of
possible worlds semantics

* requires density estimators
supporting inference tasks

Query 3 [over multiple worlds]

Given world W, what is the probability that the resident will switch
on the light in the office room?
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Evaluation: Modules

" theticand
synthetic and real-world datasets Synthetic

. _ Baves .
= without modules performance is d;}’::;anrt‘ n”ue;‘gz:'ssomzzes

better in many cases, but only slightly different numbers of instances

different numbers of variable groups
Real-World

= more explicit representation that
enables detection of recurrences

Electricity
Shuttle
Waterlevel
Covertype
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Evaluation: Recurrences
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Conclusions and Future Work

= framework to model recurrent densities and
recurrent parts of the densities

= online estimator

= extension of possible worlds semantics for
qguery mechanism

Future Work:

= more sophisticated modeling of density parts (conditional)
= recycling of modules

" implementation of query mechanism




Modeling Recurrent Distributions in Streams using Possible Worlds

Thank you for your attention



