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Abstract. The joint density of a data stream is suitable for performing
data mining tasks without having access to the original data. However,
the methods proposed so far only target a small to medium number of
variables, since their estimates rely on representing all the interdependen-
cies between the variables of the data. High-dimensional data streams,
which are becoming more and more frequent due to increasing num-
bers of interconnected devices, are, therefore, pushing these methods to
their limits. To mitigate these limitations, we present an approach that
projects the original data stream into a vector space and uses a set of
representatives to provide an estimate. Due to the structure of the esti-
mates, it enables the density estimation of higher-dimensional data and
approaches the true density with increasing dimensionality of the vector
space. Moreover, it is not only designed to estimate homogeneous data,
i.e., where all variables are nominal or all variables are numeric, but it
can also estimate heterogeneous data. The evaluation is conducted on
synthetic and real-world data.

1 Introduction

In the context of discrete densities, Geilke et al. [6, 7] presented online den-
sity estimators that not only capture the distribution of data streams but also
support data mining tasks. The presented density estimates were described us-
ing (ensembles of (weighted)) classifier chains, where each classifier predicts one
variable of the stream and is built using the variables of the previous classifiers.
This relationship is inspired by the chain rule of densities, according to which
the dependencies between the variables are modeled. As long as the density has
only a few variables, this method provides an accurate description of the data
[6]. But as soon as the dimensionality increases, the number of classifiers and
their size grows quickly – making this approach unsuitable for data of high di-
mensionality. High-dimensional data streams, however, are becoming more and
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(a) object types (b) becoming a representative

Fig. 1: On the left are the main object types: landmarks (dark gray squares),
representatives (red), and instances (gray dots). On the right is the process of
becoming a representative: If a distance vector cannot be assigned to a repre-
sentative or candidate, it is first considered a candidate (big dark gray circle).
Over time more instances appear in its neighborhood. If a predefined number is
reached, the candidate is turned into a representative (big red circle).

more frequent with the constantly increasing number of interconnected devices
that try to measure aspects of their environment to make intelligent decisions.
For example, future smart homes may have many sensors measuring various pa-
rameters such as temperature or humidity. By learning from past measurements,
machine learning algorithms have the possibility of distinguishing between typ-
ical and abnormal behavior and can suggest appropriate actions to the user.
Whereas an increase of the humidity in the basement can be explained by a
tumble dryer that has been started some time ago, such an increase in the bed
room could be due to water entering the room through an open window. The
former situation is probably quite normal for a household and requires no action,
the latter situation needs attention by the user. Providing an estimate that cap-
tures the density of the sensor measurements and provides facilities to perform
data mining tasks can be useful to develop such applications.

In this paper, we address the problem of estimating the joint density of
heterogeneous data streams with many variables. In data mining, one would
usually consider variables in the hundreds or thousands as many variables. For
density estimation, however, even 50 binary variables is already considered high-
dimensional, as there are 250 value combinations. For each of these combinations,
the estimator has to assign a density value, which makes the estimation a chal-
lenging task. To perform density estimation on data with many variables, we
designed an algorithm, called RED (Representative-based online Estimation of
Densities). The main idea is to project the data stream into a vector space of
lower dimensionality by computing distances to well-defined reference points. In
particular, we distinguish between three types of objects (see Figure 1 for an il-
lustration): landmarks, representatives, and instances. Landmarks are reference
points spanning a vector space for representatives and instances, so that the po-
sition of each object can be defined in terms of distances to the landmarks (e.g.,



the position of the red circle in Figure 1 that is connected to the four landmarks
(red circles) can be specified as a four tuple (d1, d2, d3, d4), where di is the dis-
tance to landmark i, i ∈ [1; 4]). Representatives stand for clusters of instances
and will be the main components for estimating probabilities. The landmarks will
be used to compute the relative distance of instances, and the representatives
will maintain statistical information about instances that have been observed
in their neighborhood. To maintain this information, we employ an extended
version of the density estimators proposed by Geilke et al. [6]1, called EDO (Es-
timation of Densities Online), and estimate the distances to nearby instances for
each representative. Compared to EDO, which directly estimates the density of
the instances, RED reduces the dimensionality of the dataset to the number of
landmarks. If this number is substantially smaller than the number of variables,
the model size of the estimators can be substantially reduced, thereby making
the approach suitable for data of higher dimensionality.

The main contributions of the paper are:

1. an online density estimator for heterogeneous data with many variables, i.e.,
data with many nominal and/or numerical variables,

2. a theoretical analysis for the choice of the landmarks,
3. a theoretical analysis for the consistency of the estimates.

2 Related Work

Whereas many data mining tasks have received considerable attention in the
context of stream mining recently, only little is known about the estimation of
joint densities in an online setting. In this setting, the algorithm has to learn
a joint density f solely from the instances of a data stream. Interdependencies
between instances are usually not taken into account, which distinguishes it from
online learning protocols where the outcome of a given variable is predicted based
on past outcomes [3].

Offline density estimation includes recent work based on decision trees [13],
where the leaves contain piecewise constant estimators. A similar approach was
pursued by Davies and Moore [4] as part of a conditional density estimator.
Work towards the estimation of conditional densities has been pursued among
others by Frank and Bouckaert [5] and Holmes et al. Multivariate densities are
frequently estimated using kernel density estimators [8, 14], which is also the
predominant direction of the few online variants of density estimation so far.
For example, Kristan et al. [10, 11, 9] proposed a method yielding results that
are comparable to the corresponding batch approaches. Xu et al. [16] introduced
sequences of kernel density estimators to address density estimation from a data
stream with only a few variables. The approach presented in this work differs
from kernel density estimators in two aspects: (1) the data is projected into a

1 The density estimators are designed for discrete variables, but they can be extended
to mixed types of variables by using the conditional density estimators proposed by
Eibe and Frank [5]. Details will be provided in a forthcoming journal publication.



vector space of lower dimensionality by computing distances to reference points,
and (2) the basic density estimators are online density estimators that are able
to represent complex non-parametric densities.

Datasets with many instances were considered by Peherstorfer et al. [12].
They proposed to use a sparse grid where basis functions are not centered around
the instances but at grid points. Partitioning the space of data instances was also
the strategy pursed by RS-Forest by Wu et al. [15], who used a forest of trees
to partition the data space. Density estimation on data streams with a greater
number of variables has – to the best of our knowledge – not been considered
so far, but the methods by Kristan et al. [11] and RS-Forest come closest to the
requirements and are, therefore, the methods we considered for a comparison.2

Although distances and representative instances have been used before to
project data into a space of lower dimensionality (e.g., multidimensional scaling),
the approach presented in the paper is different. Whereas other techniques try
to preserve the relevant characteristic properties of the data when embedding it
into a space of lower dimensionality, RED characterizes the data using landmarks
and provides a back translation to the original data. This back translation is a
crucial and necessary part to enable density estimation.

The approach pursued by RED is also different from micro-clustering [1].
Whereas micro-clusters maintain simple statistical properties of the data such
as the linear sum, RED uses landmarks and Gaussian mixtures to partition the
data space and then estimates the full joint density of each partition.

3 Density Estimation using Representatives

Let X1, . . . , Xn be a set of variables and let x be an instance defined over these
variables. Given a possibly infinite stream of instances with many variables,
we address the problem of estimating its density, f : X1 × . . . × Xn → [0; 1],
in an online fashion, i.e., only the current instance and its current estimate is
provided. In order to determine a density estimate f̂ , we propose a method
that reduces their dimensionality by using a small set of reference points L :=
{L1, . . . , Lm}, so-called landmarks. With these reference points, it projects the
data into a vector space of dimensionality m < n by applying a mapping, hL :
X1 × . . . × Xn → Rm, to each instance x. Here, the i-th component of hL(x)

is defined as the distance between x and landmark Li. The estimate f̂ of f
is then expressed as the product of two independent components: an online
estimate ĝ that captures the density in the vector space and a correctionFactor,
which is the expected number of instances that are mapped to the same distance
vector – without the correction factor, we would only estimate g. Hence, f̂(x) =
ĝ(hL(x)) · correctionFactor. In the remainder of this section, we give a detailed
description of these components and provide a theoretical analysis.

2 Unfortunately, even after several emails, the authors of RS-Forest did not respond
to our request to share their program.



3.1 The density of the vector space

In order to estimate the density g, RED distinguishes three kinds of objects in
the vector space: distance vectors, representatives, and candidates. A distance
vector is a projected data stream instance, which is determined by computing
the distances to the landmarks. A representative is a distance vector together
with a density estimator and a covariance matrix, where the density estimator
is supposed to provide a density estimate of nearby distance vectors. Whether
a distance is nearby is decided based on its Mahalanobis distance to the repre-
sentative. A candidate is a precursor of a representative. It will be turned into
a representative, if it gathers enough distance vectors around it. The intuition
behind these objects is that the landmarks provide a space with certain proper-
ties and guarantees, and the representatives and candidates are responsible for
modeling the density.

Given the current ĝ, the estimate is updated as follows (illustrated by Figure
1): The next instance x is first projected into the vector space by applying hL.
Then the resulting distance vector v is tested against all representatives. If a
representative is found, v is forwarded to the corresponding density estimator.
Otherwise, v is tested against all candidates. If a candidate is found, v is assigned
to the candidate. Otherwise, v becomes a candidate itself. Algorithm 1 describes
the update procedure of RED in more detail. In lines 1−2, the EDO estimates are
updated if the new instance is considered as a member of that representative.
If it does not belong to any representative (line 5), we distinguish two cases:
the instance does not belong to any existing candidate (lines 3 − 16) or it does
(line 17 − 26). In the first case, the given instance becomes a candidate itself,
as no matching representative nor candidate has been found. For this purpose,
we determine the k closest representatives and compute a covariance matrix
from their most recent samples. The result is a new covariance matrix, which
will be used in the future to decide whether or not an instance belongs to the
new candidate. In the second case (there are candidates to which the instance
belongs), there is no need to create a new candidate. Instead, the buffers of
matching candidates are simply updated. However, since the recent updates
could result in buffer sizes of θC→R instances, the update procedure finishes with
checking the buffer size of all candidates (lines 21− 25) and turning candidates
to representatives that have more than θC→R instances.

Membership tests Whether an instance belongs to a candidate or represen-
tative is decided by employing a multivariate normal density N (v;Σ), where v
is the distance vector of the representative instance and Σ is a covariance ma-
trix computed from instances in the neighborhood – when a new candidate is
created, it is computed from recent samples of neighboring representatives. The
membership decision is based on the Mahalanobis distance, which is computed
as follows:

√
(x− r)TΣ−1(x− r). Any vector with a Mahalanobis distance less

than a user-defined threshold is then considered a member.



Algorithm 1: updateDensityEstimate

Input: landmarks L, instance x, mapping hL, number of neighbors k ∈ N,
candidate threshold θC→R ∈ N, C := {(c,Σ, b) | candidate c covariance,
matrix Σ, recent instances b}, R := {(r,Σ, e, b) | representative r,
covariance matrix Σ, estimator e, recent instances b}

// check representatives

1 Let (r,Σ, e, b) ∈ R with r being closest to hL(x)
2 e.update(hL(x)) if r.isMember(x, Σ)

// no matching representative?

3 if 6 ∃(r,Σ, e, b) ∈ R : r.isMember(inst,Σ) then
// no matching candidate?

4 if 6 ∃(c,Σ, b) ∈ C : c.isMember(inst,Σ) then
// find k closest neighbors

5 pq ← priorityQueue()
6 for (r,Σ, e, b) ∈ R do
7 nb← (r, e, ‖r − hL(x)‖, b)
8 pq.insert(nb, ‖r − hL(x)‖)
9 neighbors← {pq.peekMin() | k times}

// compute covariance matrix

10 sample← ∅
11 for (r, e, ‖r − hL(x)‖, b) ∈ neighbors do
12 sample← sample ∪ {x′ | x′ ∈ b}

// initialize candidate with empty buffer

13 C.append((x, covariance(sample), [x]))

// matching candidates

14 else
15 for (c,Σ, b) ∈ C do
16 if c.isMember(hL(x), Σ) then b← b ∪ {x}; break
17 for (c,Σ, b) ∈ C with |b| ≥ θC→R do
18 e← initialize EDO estimator
19 e.update(hL(x))
20 R.append((c,Σ, e, b))

Handling of noise Almost all real-world applications suffer from certain de-
grees of noise. Hence, handling noise is of paramount importance for density
estimators but in many cases difficult. In an online setting, the problem is even
more severe, since future instances cannot be included into the decision making
process. The EDO estimators employed by RED are able to handle noise, but
in order to keep them as clean as possible, it is important that a noisy instance
does not become a representative in the first place. Otherwise, this instance and
every instance in its neighborhood becomes inevitably a part of the estimate.
Therefore, RED distinguishes between candidates and representatives. If an in-
stance cannot be assigned to an existing representative, it is first considered a
candidate for becoming a representative. Only if enough instances are gathered
around the candidate, it becomes an actual representative.



Concept drift In real-world applications, the distribution of data streams is
changing constantly and a density estimator has to adapt to these changes to
provide reliable estimates. In order to address this problem, RED pursues a
timestamp-based solution. However, old instances are not simply discarded when
they become too old, but candidates and representatives are discarded if no in-
stance has been assigned to them within a certain period of time. This time
period is specified as a parameter and can be adjusted according to the small-
est probability values that should be covered by the estimate – using Chernoff
bounds, the parameter can be computed with high confidence.

When setting this parameter, one should also consider the parameter θC→R,
as a high value for θC→R prevents rare instances from becoming a part of the
density estimate. In our experiments, we usually set θC→R to 100, which is large
enough for a statistical test but not too large to exclude less frequent instances.

3.2 Distance measure

With landmarks, high-dimensional data can be mapped to a lower dimensional
vector space. But dependent on the number and the choice of the landmarks,
the resulting vector space could still be relatively large, so that the distance
measure has to be chosen with care. For high-dimensional spaces, the Manhattan
distance (1-norm) or a fractional distance measure is usually the best choice
[2], so that we prefer p-norms with small p. Employing a p-norm, the mapping
hL : X1 × . . .×Xn → V1 × . . .× Vm with Vj ⊆ R, 1 ≤ j ≤ m, is defined as

hL(x)[Vi] :=

 ∑
Xj∈X

‖li[Xj ]− x[Xj ]‖p
 1

p

,

where ‖ · ‖ computes the distance for the given variable values and is defined

as the difference
li[Xj ]−x[Xj ]

max (Xj)−min (Xj)
for numeric values and

li[Xj ]−x[Xj ]
#values ∈ [0; 1] for

nominal values. For p, we select values from the range (0; 2], which corresponds
to the Euclidean distance for p = 2, the Manhattan distance for p = 1, and to
fractional norms for 0 < p < 1 The denominator max (Xj)−min (Xj) can only be
estimated, as the currently observed minimum and maximum values cannot be
determined with certainty in a streaming setting, making a correct normalization
impossible. For typical applications, however, an estimate is probably more than
sufficient, since extreme deviations are most likely due to a concept drift.

3.3 Choice of the landmarks

If the data stream is projected into a vector space with lower dimensionality,
information about the original instances will possibly be lost. In particular, some
of the variable interdependencies are no longer visible, as the mapping hL only
adds up the distances of individual variables. As a consequence, instances may
be projected into the same point of the vector space, i.e., there are x and x′,



such that hL(x) = hL(x′) but x 6= x′. If the original instances has only nominal
variables ({X1, . . . , Xk}) and each variable has |Xi|, 1 ≤ i ≤ k, many values, then

there are already
∏k

i=1 2 · (|Xi|−1) many possible instances that are be mapped
to the same distance value. RED would treat all of these instances equally when
computing their density value, which poses no problem to the density estimate,
as long as similar distances to the landmarks correspond to similar density values
of the instances. But it implies that the information encoded by the distances
to the landmarks needs to be sufficiently good. Therefore, we propose to choose
the landmarks in such a way that the estimate approaches the accuracy of the
underlying density estimator as |L| approaches n:

Definition 1. Let X := {X1, . . . , Xn} be the set of variables, and let m be
the requested number of landmarks. Then the first landmark L1 is defined as
(0)1≤j≤n and landmark Li+1, 1 ≤ i < m, is defined as(

(i− j + 1) · max(Xj)−min(Xj)

m

)
1≤j<i

◦ (1) ◦ (0)j>i

where max(Xj) and min(Xj) are the currently observed maximum and minimum,
respectively. The set of landmarks is denoted by L := {Li | 1 ≤ i ≤ m}.

By construction of hL and by the choice of the landmarks, the mapping hL
projects any two instances x and x′ to different points in the vector space as
long as x 6= x′, |L| = n+ 1, and certain assumptions hold. (An example is given
below.) Hence, the mapping becomes injective:

Lemma 1. If |L| = n+1, landmark Li, i ∈ [1;n+1], is defined as in Definition
1, and max is the actual maximum for all Xj ∈ X, then the projection mapping
hL : X1 × . . .×Xn → V1 × . . .× Vm with Vj = R, 1 ≤ j ≤ m, is injective.

Proof. Under the assumption that max(Xj) is the actual maximum for all Xj ∈
X, Lj [Xj ] is always larger than hL(x)[Vj ]. Hence, for xj1 6= xj2 ∈ Xj , hL(xj1)[Vj ]
is not equal to hL(xj2)[Vj ]. (Please notice that this would not have been the case,
if we had chosen Lj [Xj ] to be 1

2 ·max(Xj), since hL does not consider the sign of
differences, e.g., (min(Xj)+0.2)− 1

2 ·max(Xj) and (max(Xj)−0.2)+ 1
2 ·max(Xj)

result in the same distance).

So individual variable values do not cause two different instances to have the
same distance vector. It remains to show that this property is preserved when
computing the summation over all variable differences in hL. For this purpose,
we project X1× . . .×Xn into Rn and first show that, if |L| = n+1 , all vectors x
that start in the origin of Rn and are mapped to the same distance vector have
the same length. Let hL(x) = (v1, v2, . . . , vm) be the distance vector of x. We
can determine the possible lengths of all instance vectors x that are mapped to
hL(x) by finding the solution for the following system of equations:




1 0 0 . . . 0 v1
1 · s1 1 0 . . . 0 v2
2 · s1 1 · s2 1 . . . 0 v3

...
n · s1 (n− 1) · s2 (n− 2) · s3 . . . 1 vn

 ,

where sj equals
max(Xj)−min(Xj)

m . Due to the choice of the landmarks, the left-
hand side is a squared matrix with rank n. Hence, the system of equations has
only one unique solution: x = A−1b.

Dependent on the norm employed by hL, there are fewer or more instances
having the same length in Rn. In case of the Euclidean norm, for example, the
corresponding vectors having the same distances to the landmarks L2, . . . , Ln+1

lie on the border of a (n−1)-dimensional norm sphere (notice that L1 is excluded
here). In order to ensure that the mapping hL is injective, we simply have to
include the landmark L1, which introduces another dimension and reduces the
border of the (n − 1)-dimensional norm sphere to a single point. The same
approach is also valid for arbitrary p-norms, which we prove by constructing a
contradiction: Let L be defined as in Definition 1. Assume that there are x 6= y in

the projected vector space, such that ∀Li ∈ L :
(∑

Xj∈X ‖Li[Xj ]− x[Xj ]‖p
) 1

p

=(∑
Xj∈X ‖Li[Xj ]− y[Xj ]‖p

) 1
p

. Due to the projection of x and y into Rn and

due to the definition of ‖ · ‖, ‖ · ‖ becomes | · | in Rn. From the first part of the
proof, we can conclude that for all Li ∈ L and for all Xj ∈ X:

|Li[Xj ]− x[Xj ]|p = |Li[Xj ]− y[Xj ]|p

⇔ |Li[Xj ]− x[Xj ]| = |Li[Xj ]− y[Xj ]|,

As this equation also has to hold for L1 (L1 = (0)1≤i≤n ∈ L) and as for all
Xj ∈ X : x[Xj ], y[Xj ] ≥ 0, this implies that for all Xj ∈ X : x[Xj ] = y[Xj ],
which contradicts the assumption that x 6= y. �

This theorem makes a valuable statement about the validity of the method:
Although n+ 1 landmarks is probably infeasible for extremely high-dimensional
data streams, we know that additional landmarks are beneficial for the accuracy
of the method. Hence, it is up to the user whether the accuracy or memory
consumption is more critical.

3.4 Correction factor

If |L| < n+1, the projection mapping hL maps several instances from the original
data stream into the same point of the vector space. When RED estimates the
density value of that point, it has actually estimated the density value of all
instances that are mapped to it. Since we have no additional information on
how to divide the density value among those points, we will divide it equally.



To obtain the density value from the original data stream, we have to multi-
ply it by the integral

∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞ f(xi, xi+1, . . . , xp)dxi+1dxi+2dxn, which

is the expected density value of the variables Xi, Xi+1, . . . , Xn. In case where
all variables are discrete, this would simply be 1∏k

i=1 |Xi|
. For a continuous vari-

able Xj , we will approximate the integral using a sampling technique. In par-
ticular, we employ a conditional density estimator for f(Xj | V1, V2, . . . Vm)
and sum f(xj | v1, v2, . . . , vm) over min(Xj) ≤ xj ≤ max(Xj) with step size
max(Xj)−min(Xj)

|S| and sample size |S|. Hence, the correction factor is 1, if |L| ≥
n+ 1.

3.5 Illustrative example

To illustrate the density estimation RED, we give a small example: We generated
a synthetic data stream of dimensionality 3, for which we selected the landmarks
L1 = (1, 0, 0), L2 = (0.2, 1, 0), and L3 = (0.3, 0.2, 1) and projected it into a
vector space of dimensionality 3. Subsequently, we also projected the data into
a vector space of dimensionality 2 – this time with the landmarks L1 = (1, 0, 0)
and L2 = (0.2, 1, 0). As Figure 2 illustrates, the instance clusters are still visible
after applying hL to the data (see (a) and (d)). The relative positions remain
roughly the same, but due to the landmarks, they capture a different area in the
vector space. For the vector space that is induced by two landmarks, the instance
clusters are arranged similarly. When the instances have been mapped to the
vector space, it is up to the representatives to model the density. The density
values of the original data stream can then be computed by retranslating the
density value using the correctionFactor, where the correctionFactor accounts
for the instances that have been mapped to the same point in the vector space.

3.6 Consistency

The consistency of a density estimator is a desirable property, as it ensures
that the estimator approaches the true density. We have already shown that the
number of instances that are mapped to the same point in the vector space can
be controlled by the number of landmarks. In the following, we will prove that
RED estimates are consistent, if some further conditions hold:

Theorem 1. If |L| = n + 1, L is defined as in Definition 1, min is the actual
minimum for all Xj ∈ X, max is the actual maximum for all Xj ∈ X, and ĝ is

consistent, then f̂ is consistent.

Proof. If |L| equals n+1, then the correction factor is 1, so that it remains to show

that f̂(x) = ĝ(hL(x)). Furthermore, as Algorithm 1 partitions the vector space
into independent subregions where each subregion has its own online density
estimator, it suffices to show that the estimator of each subregion is consistent.

Since |L| equals n + 1 and the assumptions for min and max hold, hL is
injective according to Lemma 1. Hence, for any two instances x1 and x2 that
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Fig. 2: Illustrates a synthetic data stream (see Plot (a)) that is projected with
three landmarks (see Plot (b)) into a vector space of dimensionality 3 (see Plot
(c)) and with two landmarks to dimensionality 2 (see Plot (d)). Please notice the
the dark gray dots in Plot (c) and (d) are the representatives. Due to the Ma-
halanobis distance, dense regions have more representatives than sparse regions,
which helps to model the density more accurately.

only differ in variable Xj by a small amount, it follows that

hL(x1[Vi])
p − hL(x2[Vi])

p =

p∑
k=1

ck · ‖x1 − x2‖,

by definition of hL, where 1 ≤ i ≤ n + 1 and ck are constants that have two
factors: li and a constant that results from the binomial theorem. In other words,
the density in the vector space is only shifted and compressed, but the original
information of f is completely contained in g. Therefore, we can conclude that
f̂(x) = ĝ(hL(x)). �

4 Evaluation

In this section, we analyze the behavior of RED3 with respect to its parameters
on synthetic datasets and evaluate its capability to estimate joint densities on

3 An implementation of RED is available as part of the MiDEO framework:
https://github.com/geilke/mideo
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Fig. 3: For data of different dimensionality, the figures give some details about
the behavior of RED when the Mahalanobis or the number of landmarks is
increased. All plots are aggregated over all synthetic datasets.

several real-world datasets. RED has several parameters that have to be chosen:
the number of landmarks |L|, the Mahalanobis distance, the threshold of be-
coming a representative θC→R, and the distance measure p. As θC→R is mostly
relevant for drift detection or for application tasks such as outlier detection, we
do not discuss this parameter here. Also not discussed is the parameter p, as a
detailed analysis would be in conflict with the given space constraints. Hence, we
focus our experimental analysis of the parameters on the number of landmarks
|L| and the Mahalanobis distance. For |L|, we consider the values 2, 3, 5, 10,
and 20. For the Mahalanobis distance, we consider the values 0.1, 0.5, 1.0, 2.0,
5.0, and 10.0.

As datasets, we generated synthetic data consisting of 1, 2, 5, or 10 multi-
variate Gaussians in a d-dimensional vector space with d ∈ {2, 3, 5, 10, 20}. The
mean variables and covariance matrices were drawn independently and uniformly
at random, where the values for the mean have been drawn from the interval
[−10; 10) and the values for the covariance matrix from the interval [0.5; 3).

The influence of the number of landmarks is illustrated by Figure 3. The
shapes of the curves show that the performance is increasing with the number
of landmarks until it reached the dimensionality of the dataset. So, for d2, the
peak performance is reached at 2, for d5, the peak performance is reached at 5,
and, for d10, the peak performance is reached at 10. The increase for |L| ≤ d is
completely in line with Theorem 1. The decrease for |L| > d can be explained by
the increase of the vector space: Due to higher dimensionality of the vector space,
fewer and fewer instances share the same space and, hence, fewer instances are
available to provide an estimate for this region. This effect is also responsible for
the increase of the variance for increasing numbers of landmarks (as visible for
d10). Due to the small number of instances per region, the density estimators
are more sensitive to smaller changes, which results in an increased variance. So
generally, up to d landmarks are beneficial for the performance, but the closer |L|
gets to d, the more instances are required to compensate for the higher variance.

The effect of the Mahalanobis distance is summarized by Figures 4 and 3.
For lower dimensional datasets (e.g., d2 and d3), the performance is slightly



d2

d3

d5

d10

d20

M0.5 M1.0 M2.0 M5.0 M10.0

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

Fig. 4: The heatmap summarizes the effects of the Mahalanobis distance for
data of different dimensionality di (i ∈ {2, 3, 5, 10, 20}). It shows the improve-
ment (red) and degradation (blue) if RED uses a specific Mahalanobis distance
(M0.5,M1.0,M2.0,M5.0,M10.0) compared with a Mahalanobis distance of 0.1.

degrading for minor increases of the Mahalanobis distance. For M5.0 and M10.0,
however, we already see substantial improvements, which can be explained by
fewer numbers of representatives, which have more instances at their disposal to
provide a good estimate. For higher dimensional datasets (e.g., d10 and d20), this
trend is reverted, and we consistently observe that a low Mahalanobis distance
is the better choice among the given selection. This can be explained by the
possibility for each representative to specialize on regions with many instances.
Otherwise, one representative would be responsible for a diverse set of instances.
This observation is further supported by Figure 3. If there is only one Gaussian, a
higher Mahalanobis distance is beneficial. But if we have several Gaussians (e.g.,
10), a larger Mahalanobis distance leads to an degradation of the performance.
So generally, one can say the higher the dimensionality of the data, the lower
should be the Mahalanobis distance.

If data mining and machine learning should be performed on RED estimates,
the estimates have to describe the density of the data as accurately as possible.
Since several compromises have been made to enable the estimation of data
with many variables, we do not expect to outperform other density estimators.
However, the performance should be in the same order of magnitude.

In order to evaluate RED on real-world data, we selected the state-of-the
art online density estimation method, which is the online kernel density esti-
mator oKDE by Kristan et al. [11], and compared the performance on four
publicly available datasets: covertype (581, 012 instances, 54 attributes), elec-
tricity (45, 313 instances, 9 attributes), letter (19, 999 instances, 17 attributes),
and shuttle (58, 000 instances, 10 attributes). For every parameter setting and
for every dataset, the average log-likelihood is computed 15 times. In order to
take possible concept drifts into account, the log-likelihood was computed in a
prequential way, i.e., the log-likelihood of a given instance has been computed
before using it for training. The instances used to compute the initial estimator
(the first 100) were excluded from this computation.

The results are summarized in Figure 5. The most apparent observation is the
performance increase with increasing numbers of landmarks. As already observed
on synthetic data, this performance increase is accompanied with an increase of
the variance. Dependent on the dataset the effect is visible to different degrees



-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

oKDE L1 L2 L3 L4 L5 L10

lo
g

-l
ik

e
lih

o
o

d

(a) electricity (9 attributes)

-50

-40

-30

-20

-10

 0

 10

oKDE L1 L2 L3 L4 L5 L10

lo
g

-l
ik

e
lih

o
o

d

(b) shuttle (10 attributes)
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(c) letter (17 attributes)
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Fig. 5: The figure shows a comparison of oKDE with RED for varying numbers
of landmarks (|L| ∈ {1, 2, 3, 4, 5, 10}) in the case of RED. On the y-axis is the
average log-likelihood computed in a prequential way.

and does not even depend on the number of variables (electricity vs. shuttle).
But most surprising is probably the abrupt increase on the covertype dataset.
A more detailed analysis of this matter revealed that this is due to the nature
of its instances. Covertype has 10 numerical variables, 43 binary variables, and
one further nominal variable. As most of the binary variables are 0 for almost all
instances, they do not provide sufficient additional information to justify more
landmarks. Hence, with every new landmark, the estimators have fewer instances
and provide estimates that are more sensitive to individual instances.

When we compare RED to oKDE, we observe that RED performs surpris-
ingly well. For electricity and letter, RED is approaching the performance of
oKDE. For shuttle, the performance is even better than that of oKDE, if RED
uses 5 or 10 landmarks. For covertype, oKDE was not even able to process
the dataset within 15 hours, whereas RED was able to produce results for all
landmark sizes. Hence, RED is able to compete with oKDE on low dimensional
data, when a sufficient number of landmarks is chosen, while it can also handle
high-dimensional data (e.g., more than 50 attributes). How many landmarks are
sufficient for a specific datasets depends on two aspects: its intrinsic dimension
and the selected landmarks (because the landmarks determine which dimensions
are considered for evaluating the distance function).

Considering that we made several compromises to enable the density esti-
mation of data streams with many variables, RED performed very good on low-
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Fig. 6: Number of instances processed per second.

and medium-sized data streams. The insights we gained about the parameters
should be a useful guide for applications to other data streams. Alternatively,
one could also follow a multi-layer approach where three or four RED estima-
tors are initialized with different parameter settings. When enough instances are
available, one could then choose the estimator with highest log-likelihood. This
is enabled by excellent runtime behavior.

4.1 Runtime

RED offers many opportunities for parallelism. For our evaluation, however,
we wanted to keep the implementation simple and avoided any advanced op-
timizations. The current implementation is still fast enough for data streams
applications, as Figure 6 summarizes. The general behavior is the same for all
tested datasets (electricity, shuttle, and covertype). In the beginning, when al-
most no representatives are discovered and the density estimators are still very
simple, the RED estimate is able to process 1400 or more instances per second.
Then, with increasing numbers of training instances, it drops to several hundred
instances per second before it stabilizes (at 100 to 300 instances per second, de-
pending on the number of landmarks). This is in line with the expected behavior
of the method. First, the instances are required to find a partitioning of the vec-
tor space. When this partitioning is converging and the corresponding density
estimators have received a larger number of instances, the processing speed of
the estimator becomes more and more constant.

5 Conclusions

We proposed a new approach for estimating densities of heterogeneous data
streams with many variables, which reduces the dimensionality of the data by
projecting it into a vector space. In particular, the algorithm chooses a small
number of instances, called landmarks, and creates a vector space in which the
position of each instance is computed in terms of distances to the landmarks.
Subsequently, the density is described by partitioning the vector space with



representatives and estimating the density of each partition by employing on-
line density estimators. In the theoretical analysis, we showed the validity and
consistency of the presented density estimator. With experiments on synthetic
and real-world data, we showed that – despite the compromises that had to be
made to enable the estimation of densities with many variables – RED produces
estimates having a comparable performance to that of state-of-the art density
estimates. Keeping in mind that other approaches are possibly not able to han-
dle large numbers of variables, RED could be, at this point, the only available
option for some data streams.

In the future, we plan to further analyze the choice of landmarks and plan to
perform data mining tasks such as outlier detection, the detection of emerging
trends and inference on RED estimates.
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