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Smart 

 1000 sensors 

 5 measurements per second 

 5 years 

 

  more than 2 billion measurements 

  about 2 GBs of data 
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 energy supplier 

 1 million households 

 

  about 2 PBs of data 

  constant update of patterns 
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F 

Query3 Query1 Query2 

Knowledge 

Query:  

Return the probability distribution for sensors in 
the living room during the week days. 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

10 

𝑓(𝑋1, … , 𝑋𝑛)  

f 

EDDO 

F 

Inference 

Weaknesses of EDDO 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

11 
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f(𝑋1) ∙  𝑓 𝑋𝑖 𝑋1, … , 𝑋𝑖−1

𝑛

𝑖=2

  

f 

EDDO 

F 

Inference 

Weaknesses of EDDO 

only for discrete random variables 
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Goals 

A density estimator that  

 estimates joint densities from data streams 

 is able to deal with heterogeneous data, and 

 and works for higher dimensional data. 

For density estimation, 100 variables is high dimensional. 
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Online Density Estimation using Representatives (RED) 

landmark 

instance 

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 20, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 50, … =       ∈ ℝ𝑛 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

18 

Online Density Estimation using Representatives (RED) 

ℝ𝑛 ∋ 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)                     𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ ℝ𝑚 

landmark 

instance 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

19 

Online Density Estimation using Representatives (RED) 

𝐼 = 𝑥 ∈ ℝ𝑛   ℎ𝐿 𝑥 = 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4)  

𝑔 𝑣 =  𝑓 (𝑥 ) 𝑥  ∈𝐼  

ℝ𝑛 ℝ𝑚 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

20 

Online Density Estimation using Representatives (RED) 

landmark 

representative 

instance 

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 10, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 80, … =       ∈ ℝ𝑛 
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Online Density Estimation using Representatives (RED) 

landmark 

representative 

instance 

𝑥 ∈ ℝ𝑛   ℎ𝐿 𝑥 = (𝑣1, 𝑣2, 𝑣3, 𝑣4)  



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

22 

Online Density Estimation using Representatives (RED) 

landmark 

representative 

instance 

Mahalanobis distance: 𝑥 − 𝑣 𝑇 Σ−1  𝑥 − 𝑣  
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Online Density Estimation using Representatives (RED) 

landmark 

representative 

instance 

𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
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Online Density Estimation using Representatives (RED) 

landmark 

representative 

instance 

f(𝑉1) ∙  𝑓 𝑉𝑖 𝑉1, … , 𝑉𝑖−1

𝑚

𝑖=2

  𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) 
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ℝ𝑛  ∋  𝑥  𝑣  ∈ ℝ𝑚 

𝑔  

ℎ𝐿 

ℎ𝐿 𝑥 = ℎ𝐿(𝑦 )  but   𝑥  ≠  𝑦  

𝑓  

𝑋1  ×  𝑋2  ×  … × 𝑋𝑛  ∋  𝑥  
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𝑔 𝑣 =  𝑓 (𝑥 ) 𝑥  ∈𝐼  

ℎ𝐿 𝑥 = ℎ𝐿(𝑦 )  but   𝑥  ≠  𝑦  
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Main idea: 

 theoretical foundation 

 landmarks are orthogonal to each other 

 if 𝐿 = d + 1, then consistent estimator 

 back translation by system of linear equations 
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Evaluation: Parameter Setting 

Parameters: 

 𝜃𝐶→𝑅 = 100  

 Euclidean norm 

 𝐿  ∈  2, 3, 5, 10, 20  

 𝑀 ∈  0.1, 0.5, 1.0, 2.0, 5.0, 10.0  

Datasets 

Synthetic 

Gaussian mixtures 

Real-World 

Covertype 
Electricity 
Letter 
Shuttle 
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Evaluation: 𝐿  
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Evaluation: Mahalanobis (1 Gaussian) 
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Evaluation: Mahalanobis (10 Gaussians) 
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Evaluation: Parameter Setting 

 𝐿  depends on dimensionality of data 

 small 𝑀 partition the space better 

 but at some point too few instances per region 
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Evaluation: Performance 

oKDE: 

 online Kernel Density Estimator 

 for multi-variate densities 

 for continuous variables 

 by Kristan et al. (2011) 

Datasets 

Synthetic 

Gaussian mixtures 

Real-World 

Covertype 
Electricity 
Letter 
Shuttle 
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electricity (9 attributes) shuttle (11 attributes) 

letter (17 attributes) covertype (54 attributes) 
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Conclusions 

 
 online density estimation in higher dimensions 

 heterogeneous data stream 

 theoretical foundation 

 comparable to the state of the art 

 

 

Future Work: 

 new strategies for landmarks selection 

 outlier detection 

 detection of emerging trends 

36 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

Thank you for your attention 

 

37 



Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions 

 

Online Density Estimation using Representatives (RED) 
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ℝ𝑛  ∋  𝑥  𝑣  ∈ ℝ𝑚 

𝑔  

ℎ𝐿 

ℎ𝐿 𝑥 = ℎ𝐿(𝑦 )  but   𝑥  ≠  𝑦  

𝑓  

𝑋1  ×  𝑋2  ×  … × 𝑋𝑛  ∋  𝑥  

  𝑐𝑜𝑟𝑟𝑗 𝑥𝑗  𝑣1, … , 𝑣𝑝

𝑝

𝑗=𝑖

−∞

−∞

 𝑑𝑥𝑖+1𝑑𝑥𝑖+2 … 𝑑𝑛 
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Online Density Estimation using Representatives (RED) 

𝐼 = 𝑥 ∈ ℝ𝑛   ℎ𝐿 𝑥 = 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4)  

landmark 

instance 


